# What Is an Asymptotically Hyperbolic Manifold? 

John M. Lee<br>University of Washington<br>E-mail: johnmlee@uw.edu


#### Abstract

This is a report on joint work (partially in progress) with Eric Bahuaud. Typically, one defines an asymptotically hyperbolic manifold to be a noncompact manifold $M$ that is the interior of a smooth compact manifold with boundary $\bar{M}$, endowed with a metric $g$ with sectional curvatures approaching -1 at infinity, such that if $\rho$ is a smooth defining function for $\partial M$, then $\bar{g}=\rho^{2} g$ extends at least continuously to a metric on $\bar{M}$. This definition is an extrinsic one, relying on the prior knowledge of the existence of the conformal compactification.

This raises an interesting question about what purely intrinsic conditions on a complete, noncompact Riemannian manifold will guarantee that it has a conformal compactification in the sense above. There are two parts to the question: a topological part and a regularity part.

For the topological part, one needs to verify the existence of an essential subset, i.e., a smoothly bounded compact subset $K \subseteq M$ for which the outward normal exponential map is a diffeomorphism onto $M \backslash(\operatorname{Int} K)$. Because this is a global condition on $K$, it would be useful to have a more local condition based on the curvature at infinity and the geometry of $\partial K$. I'll describe progress toward proving the following conjecture (a sort of Cartan-Hadamard theorem for manifolds with boundary): If $M \backslash(\operatorname{Int} K)$ has nonpositive sectional curvature and weakly concave smooth boundary, and the fundamental group of $\partial K$ surjects onto that of $M \backslash(\operatorname{Int} K)$, then $K$ is an essential subset.

For the regularity part, we focus on Einstein manifolds. Romain Gicquaud has proved that if $(M, g)$ is a complete Einstein manifold with an essential subset $K$ and sectional curvature $-1+O\left(e^{-2 r}\right)$, where $r$ is the distance to $K$, then $g$ has a $C^{1, \alpha}$ conformal compactification. We show that this cannot be improved to $C^{2}$.


