S^1 -equivariant Index theorems and Morse inequalities on complex manifolds with boundary

Xiaoshan Li

Wuhan University E-mail: xiaoshanli@whu.edu.cn

Abstract

Let M be a complex manifold of dimension n with smooth connected boundary X. Assume that \overline{M} admits a holomorphic S^1 -action preserving the boundary X and the S^1 -action is transversal and CR on X. The $\overline{\partial}$ -Neumann Laplacian on M is transversally elliptic and as a consequence, the m-th Fourier component of the q-th Dolbeault cohomology group $H^q_m(\overline{M})$ is finite dimensional, for every $m \in \mathbb{Z}$ and every $q = 0, 1, \ldots, n$. This enables us to define $\sum_{j=0}^n (-1)^j \dim H^j_m(\overline{M})$ the m-th Fourier component of the Euler characteristic on M and to study large m-behavior of $H^q_m(\overline{M})$. In this talk, we will present an index formula for $\sum_{j=0}^n (-1)^j \dim H^j_m(\overline{M})$ and Morse inequalities for $H^q_m(\overline{M})$. This talk is based on a joint work with Chin-Yu Hsiao, Rung-Tzung Huang and Guokuan Shao.