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1 The Paneitz operator

On <M3,g), the Paneitz operator is given by

5
Py = NA%p+4div[Re(V,e;)e] — , div(RVp)
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Here e1, eo, e3 is a local orthonormal frame with respect
to g and
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For any smooth positive function p,

7
Poap=p'Py(pp).

Hence if § = p—%g, then

~

Q = —2,07Pp.



It can be compared with conformal Laplacian operator in
dimension n > 3,
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For p > O,
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2 Some examples

1. OnR3, P = A2

2. On S3
15
v 8’ 1 15 3 5
P = A? —A——z(—A —)(—A——).
+2 16 +4 4
The eigenvalues
15 105
Al=——-<0, Xo=—F"+>
1 16 27 16

Note on S™, n >3, L > 0. S™\ {N} = R" The
H?! capacity of {N}is 0.

On S3, S3\ {N} = R3. The H? capacity of {N}
is not 0, H? (S3> c C1/2 (S3>.



3. On S2 x St

9
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P = <A52‘|‘A51) ‘|‘§As2—§A51‘|‘E-

We have P > O i.e. Ay = 7% > 0.

4. Berger spheres. S3 2 SU (2).

1 0 0 1 0 —1
X1=<O —i)’XQ:(z‘ 0>,X3=<1 0 >,

is a base for su(2). For t > 0, we pick a left invari-
ant metric with t_le, X9, X3 orthonormal. Then

R = 8-—2t,
169
Q = —?t4 + 41t% — 18.

For 0.8192 < t < 1.1269,

Q>0 A <0, X>0.
Fort > 1.1269 or 0 < t < 0.8192,

Q <0, A\ >0.



3 The @ curvature equation and

Paneitz energy

Let g = u—*g for some u > 0, then QQ =const becomes

Pu = const -u "

Let

E ()
= /M Py - pdp

5 1
= [ [(A¢)2 ~ 4Re(Vep, V) + - B[V — ~Qu?| dp

one possible way to solve the above equation is to study
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This is simply the normalized total () curvature functional
(up to a negative constant).

If @ > 0 (for example S3), it is not clear at all if Yz (g)
is finite or not. The study of this question leads to the
solution of () curvature equation indirectly.



4 The standard sphere

Theorem 1 (Yang-Zhu) For any u € H? (S3> with
u > 0, we have

a7 [ (@@ = S 19ul? = 2] an > 32 |57

In another word, the Paneitz energy minimizes at u = 1.

Note all critical points are identified by Choi-Xu.

Recall the sharp Sobolev inequality on S™, n > 3,
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inf
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peH1(S™)\{0} lell® 2n
,n—2
2
= n(n-—1)|5"".
A classical approach is for 2 < g < =5, we study
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The perturbation problem can be easily shown to have a
minimizer u. After scaling it satisfies

Lu=u?"1 uw>0 onS™

Method of moving plane shows this equation has only
constant solution. Hence

4 1
Jon |22 Vo2 41 (n — 1) ?
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peH(SM)\{0} lella

1_2
= n(n—1)|S"" «.

Let ¢ 7 % we get the sharp inequality.



5 Hint of the formulation of per-

turbation problem

Consider

_ L2
Yalg) = uEH2I(r]]\;),u>O Hu 1HL6(M)

Is Y4 (g) achieved?

Let u; be minimizing sequence. We assume max,s u; =
1. Then E(u;) < c and ||u;||g2 < c. After passing
to a subsequence u; — u weakly in H?, hence u; = u
uniformly.

e If uw > 0, then it is a minimizer.

e If u(p) = 0 for some p, then

maxu = 1,
M

o =
LO(M) ’

E(u) < 0.



Definition 2 We say P satisfies condition P if for any
¢ € H?(M)\ {0}, ©(p) = 0 for some p, we have
E () > 0.

Note

condition P = Y4 (g) is achieved.

e If P > 0, then condition P is satisfied. Hence Y4 (g)
is achieved (Xu-Yang).

e 53 can not satisfy condition P because of the non-
compact Mobius transformation group. But it satis-
fies condition NN:

Y E H? (33) , 0 (p) = 0 for some p = E () > 0.
This should be compared with A\; < 0.

e RP3 satisfies condition P.



e Berger's sphere (53,9,5) satisfies condition P except
when t = 1 (Hang-Yang).

e Assume Y (g) > 0, @ > 0, then
(M, g) satisfies condition NN <= Ay > O;
and

(M, g) satisfies condition P
<= X2 > 0and (M,g) is not conformal
diffeomorphic to S3.

(Hang-Yang)



6 The perturbation problem

For € > 0 small, we replace P by P + ¢,

Be (¢) = [, (Po+ep) pdu = E(¢) +<lell32.

Then we study

SR A o A

Clearly the extremal problem has a minimizer u with
—1 _
Hu WLO' =1 and

Pu + esu = _85U_7 on S3.

Conjecture 3 For € > 0 small, the above equation has
only constant function as solution.

Nevertheless we can show every minimizer must be con-
stant function by symmetrization. Unlike classical sym-
metrization approach, our method only works for mini-
mizers. Note
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Main ingredients:

x—y
GP(ZE,’y) — _| S |

e For € > 0 small enough,

GP—I—&? (z,y) = —ke(z - y),

here ke is a positive, strictly decreasing function on
[—1,1].

e (Baernstein-Taylor) If k is bounded decreasing func-

tion on [—1, 1], then for f, g € 1 <S3>,

/53 /53 k(x-y) f*(z)g" () du (z) du ()
< [y [k @) F @) 9 () du () dis (v)



o Let
Pv+ev=—s:(u*) ",

then v is again an extremal function. In fact «u must
be radial symmetric and decreasing with respect to
some point.

e Kazdan-Warner type conditions: if x and p are pos-
itive smooth functions such that

Pp=—xp ',

then

[ 5 (VX (@), Vi) p(2) Cdu(x) =0
fore. =1,2,3,4.

This process uses ideas from Hang-Wang-Yan on maxi-
mizing isoperimetric ratios among conformal metrics with
zero scalar curvature and Robert on the positivity of mini-
mizers for fourth order () curvature problem in dimension
at least 5.



7 General metrics

Theorem 4 (Hang-Yang) /f (M3, g) is a smooth com-
pact manifold with Y (g) > 0 and there exists a g € [¢]
such that Q > 0, then the following statements are
equivalent

Y4 (g9) > —o0.
Mo (P) > 0.
P satisfies condition NN.

The first ingredient is an identity by Hang-Yang: if Y (g) >
0, then

2
-1\ __ 2 —1

g
Here are some applications of the identity:



1. Assume Y (g) > 0 and there exists a g € [g] such
that Q > 0, then ker P = 0 and

0
Gp=H+ ) Tpx*H,

k=1
here
[, = Ty#%---%Tq (ktimes),
Gr,(p,q)*
H(p7Q) — 2567'('2 y
Gr, (p,q) " 2
1) = T Regy ) ()
Also
K1+ Ky (x,y) = /MKl (x,2) Ko (2,y)du(z).

Here we use ideas of Aubin. The formulas are moti-
vated from Humbert-Raulot and Gursky-Malchiodi.

2. Assume Y (g) > 0. Denote

Tr f(p) = /M M (p,q) f(q)du(a).

The following statements are equivalent:



e there exists a § € [g] such that Q > 0;
e the spectral radius 74 (Tl'l) < 1;

e ker P=0and Gp(p,q) <0 for p # q.

The second ingredient is:

. E(u)
= f .
v (9) we 2\ (0} [y u2dpe
u(p)=0 for some p

Example 5

P satisfies condition NN < v (g) > 0;
P satisfies condition P < v (g) > 0.

Example 6 v (53,953) = 0.

Shectch of proof. Note that

A1 < v < Ao



If Ao > 0, let w € H? (M) such that u (p) = 0 for some
p, ||u|l;2 = 1 and E(u) = v. Then based on the sign

of Gp we know u (q) # 0 for g # p, say u (q) > 0 for
q # p. We also have

Pu = vu 4 aop.

Hence

Pu-Gldy = / GLldy.
/M u Lap 'LL v Mu L7 /.L

On the other hand,

2
Pu-G7ld :/ WG | Re du.
/M U L.p H M L.,p Gi,pgg M
It follows that
1 1 2
G ldy = / G- |Re ‘ du.
I//M’LL L,p |92 Mu L,p Géll},pgg %

Hence v > 0. =



