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ABSTRACT

This thesis discusses some topics in finite field theory and their applications in
combinatorics. For finite field theory, set complete mappings are defined and studied,
and as a combinatorial application, we consider generalized pandiagonal Latin squares
defined over finite fields.

Itis well known that every mapping from a finite field into itself can be expressed
as a polynomial over this field. Some polynomials such as permutation polynomials and
complete mappings over finite fields are not only quite interesting but very useful as well.
Permutation polynomials have been studied extensively for a long time. Complete
mappings are a special kind of permutation polynomials. Both of them have been applied
to combinatorics, finite,geometries, recreational mathematics and statistics.

In Chapter 2, set complete mappings over finite fields, which are generalizations
of both permutation polynomials and complete mappings, are defined and some properties
of set complete mappings are studied. In addition, some criteria for special kinds of
polynomials to be set complete mappings are given and relations between set complete
mappings based on different sets are discussed. Finally, in the last section, very complete
mappings, which are a special kind of set complete mappings, are studied.

A pandiagonal Latin square is a Latin square with the property that each of the
wrap-around right or left diagonals consists of all symbols appearing in the square. Such
squares have been used in statistical or experimental design theory. In Chapter 3,

generalizing the usual pandiagonal Latin square transformations, we consider the

generalized pandiagonal Latin square transformations over finite fields. The group
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structure of all such generalized pandiagonal Latin square transformations is determined,
and generalized pandiagonal Latin squares are constructed using generalized pandiagonal
Latin square transformations. As an application of very complete mappings, several
methods to construct generalized pandiagonal Latin squares have been given.

Finally, some properties and criteria concerning permutation polynomials are

given in Chapter 4.
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CHAPTER 1

PRELIMINARIES

In this chapter, we are going to give a survey of known properties which we will
need in subsequent chapters. Unless a method of proof is central to our later work, we
will omit the proof.

In section 1, we discuss some properties of groups, especially properties about
solvable groups and presentations of groups. We discuss fields and finite fields in
section 2. In fact, we will concentrate on the relation between finite fields and finite
extensions of the p-adic field Qp. In section 3, we study some properties of linear
algebra, including circulant matrices and their determinants. In particular, we focus on
the general linear group and properties of circulant matrices. In section 4, we will study

permutation polynonﬁals over finite fields.

1. Groups

For definitions and basic properties of groups, subgroups, normal subgroups,
permutation groups and isomorphisms of groups, the reader should consult Rotman's

book [37]. Here, we just state two definitions and some properties relating these two

definitions.




Definition. A normal series of a group G is a chain of subgroups
G=G2..0G={ 1} in which G;,, is normal in G;, denoted G;,,AG;, for all i. The

factor groups of this normal series are the groups Gi/Gi 4 for i=0, 1,...,n-1, and the

length of this series is the number of strict inclusions. Moreover, a group G is solvable in

case it has a normal series whose factor groups are commutative.

It is easy to see that every abelian group is solvable. For solvable groups, we

have the following necessary and sufficient conditions.

Theorem 1.1.1. Let HAG. Then G is solvable if and only if H, G/H are

solvable.

Using Theorem 1.1.1, we have the following examples. -~

Theorem 1.1.2.
(1) The Isymmetric group S_ is solvable if and only if n < 4.
(2)  Ifp and q are primes, then any group of order pZq is solvable. In

particular, any group of order 12 is solvable.

3) The dihedral groups D, are solvable.

Definition. A collection of elements ay, ..., a;, of a group G is called a set of

generators if every element of G is expressible as a finite product of their powers. Such a

group is conveniently denoted by the symbol <aj,...,a;,>. A set of relations




g (a2 )=¢, where e is the identity of G and k=l,....s, satisfied by the generators of

G is called a presentation of G if every relation satisfied by the generators is an algebraic

consequence of these particular relations.
For our presentation, we need the following results, see [7]

Theorem 1.1.3. Let G be a group and let a, b € G with e the identity of G.

(1) If a and b are generators of G satisfying a2=bM=¢ and aba=b"l, then G is
isomorphic to the dihedral group D,

(2)  Ifaandb are generators of G satisfying a?=b3=(ab)4=e, then G is

isomorphic to the symmetric group Sy.
2. Fields

For basic properties of fields, both finite and infinite, we refer to Chapters 1 and 2
of Lidl and Niederreiter's book [22]. Here, we are going to study the relationship
between finite fields and p-adic number fields (see [21]).

Let p be a prime. For any nonzero integer a, let ordp a be the highest power of p

a
b'!
ordp r = ordj, a-ordp b. Using these definitions, we define a map | I, on the set Q of all

which divides a. For any rational number r =, a, b nonzero integers, we define

rational numbers by

ifr£0

1
ordp T

p
0 ifr=0.




Theorem 1.2.1. |lpis 2 norm on Q.e.,llp satisfies (1) Ity lp=0 if and only if

1,=0,Q2) I lp=In IpI 1, Ip and (3) I 1y+1y lp<ity Ip+|r2Ipforallr1,r28Q).

From this theorem, we can define a metric on Q by d(a,b) = la-blp for alla,beQ.

Note that the norm | [pon Qis a non-Archimedean norm (a norm with the property
| a+b |p < max {la Ip, b lp} for all a, b). Let |l denote the usual absolute value. Itis not
difficult to see that | l.. is an Archimedean norm (i.e., not a non-Archimedean norm).
Furthermore, by the "trivial" norm, we mean the norm | | such that 1 01=0and Ix|=1 for
x#0.

Now, two metrics di and dp are equivalent whenever each sequence is Cauchy
with respect to d if and only if it is Cauchy with respect to d2, and two norms are

equivalent if their induced metrics are equivalent. With this equivalence relation, we have

Theorem 1.2.2. (Ostrowski Theorem). Every nontrivial norm on Q is equivalent

to | I for some prime p or for p = c.

Because of this theorem, any norm we consider later is | Ip, where p is either a
prime or p = . Note that Q is not complete with respect to any norm | Ip. Let Qp be the
completion of Q with respect to | I,. We can identify Q as a subset of Qp. Also, we can
extend definitions of addition and ‘multiplication on Q to define operations on Qp so that

Qp is a field and Q is a subfield of Qp. It is not difficult to see that Qp is complete. Now,

let Z, = {aeQpllaly<1). Z, is called the ring of p-adic integers.

Now, we consider any finite extension of the field Qp. We have




Theorem 1.2.3. Let K be a finite extension of Qp. Then there exists a field norm

on K which extends the norm | | on Qp.

We will use the same notation | Ip for the field norm on K which extends the norm

Ip on Qp. For any finite extension K of Qp, there is a subring of K 'which contains Zy,.

Theorem 1.2.4. Let K be a finite extension of Qp of degree n, and let A =
{xeKllIxlp<1}and M = {xeKllIxlp<1}. Then A is a ring, which is the integral
closure of Z (i.e., the set of all x € K which satisfy an equation of the form x™ + alxm'l

+..+ay, x +a, =0 with the a; € Zp). M is the unique maximal ideal of A, and A/M is a

finite extension of the finite prime field Fp of degree at most n.

In this theorem, the field A/M is called the residue field of K. It is a field
extension of Fp of some finite degree f. A itself is called the "valuation ring" of | Ip in K.
Moreover, Theorem 1.2.3 describes a relation between p-adic fields and finite fields. In

fact, we have a more precise result.

Theorem 1.2.5. Letn be a positive integer. There is exactly one extension K (up
to isomorphism) of Qp of degree n whose residue field is F ;. Moreover, K can be

P
obtained by adjoining a primitive p"-1st root of 1 to Qp.

3. Linear Algebra

For basic properties of vetor spaces, linear transformations and matrices, we refer

to Perlis's book [33].




Let V be a vector space of dimension m over a field K. Then the set of all
nonsingular linear transformations on V forms a group under functional composition.
This group is called the general linear group. This group is isomorphic to the
multiplicative group of all nonsingular mxm matrices over K, denoted GL(m,K). From

Theorem 1.3.1 through Theorem 1.3.5, the reader should consult Rotman's book [37].

Theorem 1.3.1. Let K = Fq be the finite field of order q. Then IGL(m,Fg)l =
(qM-1) (qM-)...(qm-q™-1).

Now we are going to study the solvability of GL(m,Fq). We need some

additional terminologies. Let K be a field. The special linear group SL(m,K) is the

multiplicative group of all mxm matrices over K whose determinant is:1.

Theorem 1.3.2. SL(m,K) is a normal subgroup of GL(m,K). Moreover,
GL(m,K) is a semidirect product of SL(m,K) by K*.

From Theorem 1.1.1 and this theorem, we see that GL(m,Fy) is solvable if and

only if SL(m,K) is solvable. Also, we have ISL(m,Fg)l = (“““”(q’“'qq)_'l"(qm"‘“"l) from this

theorem.
Let Z,, be the center of SL(m,K). The projective unimodular group PSL(m,K) is

the group SL(m,K)/Z,. Since Z, is abelian, Z, is solvable. So SL(m,K) is solvable if

and only if PSL(m,K) is solvable. For PSL(m,K) we have the following two theorems.

Theorem 1.3.3. The group PSL(2,Fy) is simple if and only if q > 3.




Theorem 1.3.4. The groups PSL(m,K) are simple for all m 2 3 and all fields K.

Note that the simple groups PSL(m,K) in the above two theorems are nonabelian
and not solvable. Form = 1, GL(1,Fg) is isomorphic to F: and so is solvable. For
m =2 and q = 2, ISL(2,F)| = 6 and so SL(2,F7) is solvable. Now, consider m = 2 and
q = 3. Since Z, is the center of SL(2,F3), every element of Z, commutes with all
elements of SL(2,F3). Itis not difficult to see that every element of Z, is of the form kI,
where I is the 3x3 identity matrix and k & F§ a constant. So 1Zgl = 2. This implies
| PSL(2F3) | = Q—z—gﬁz—g) = 12. By Theorem 1.1.2 (2), PSL(2,F3) is solvable.

Combining all results together, we have .

Theorem 1.3.5. GL(m,Fg) is solvable if and only if either m = lorm=2and
q=2,3.

Now, we consider a special kind of matrices, called circulant matrices. In the
remaining part of this section, we consider matrices over an arbitrary field K unless we i

specify otherwise. For all results in this part, we refer to Davis's book [8].

Definition. A circulant matrix of order n is a square matrix of the form

( G C1 S cn-l \

Cn-l G == cn-?.
C= = circ [co, Cys w05 €1 4 ] ‘




From the definition, the whole circulant matrix is determined by the first row (or
column). So, if the first row of the circulant matrix C is (Cgs Cpseers Cpo1)» WE MAY write it
in the form C = (cjj) = (cj-i), subscripts mod n.

Let P = circ (0,1,0,...,0) be an nxn circulant matrix. Then P is the permutation
matrix corresponding to the n-cycle 6 = (0,1,..., n-1). Itis easy to see that for
0 <i < n-1, Pi = circ (0,...,0,1,0,...,0) with 1 in the ith place. So circ (¢y,Cys-Cq.1) =
c I + ¢ P+ .tC, P, where I is the nxn identity matrix. Write g (x) =
co+clx+...+cn‘1x“‘1. Then C = go(P). The polynomial g-(x) is called the representer of

the circulant matrix C. The following theorem is easy to see.

Theorem 1.3.6. Let A and B be nxn circulant matrices with representers f(x) and
g(x), respectively. Let a be any constant.

(D) aA is a circulant matrix with representer af(x).

2) A+B is a circulant matrix with representer f(x) + g(x).

3) AB = BA is a circulant matrix with representer h(x) with degree of

h(x) < n-1 and h(x) = f(x)g(x) mod (x"-1).

In fact, we can assume that the polynomial h(x) in this theorem can be obtained as

follows: multiple out f(x)g(x), then replace each term xi by xJ whenever i = kn+j with

0<j<n-1.

Now suppose the field K contains a primitive nth root € of unity. Let V¢ be the

Vandermonde matrix generated by 1, C, ¢2,...5™ 1. Then we have




Theorem 1.3.7. Let {be a primitive nth root of unity in the field K. If Cis an
nalizable. Moreover, if C has representer f(x), then

nxn circulant matrix, then Cis diago

vV CCVE;1 = diag (f(1), f(Q,...,f(C“‘l)). Conversely, if D is an nxn diagonal matrix, then

C =V DV is cireulant.
K have a primitive nth root ¢ of unity. If Cis an nxn

Corollary 1.3.8. Let
en f(1), £(0),...£(CY) are all eigenvalues of C

circulant matrix with representer f(x), th

n-1 .
anid sodet € =TIFC)-
i=0

n-1 .
From this corollary, we have that if we let gx) = xn-1, then det C= 11 f(CJ) =
=0

R (gx), f(x)) = the resultant of g(X) and f(x).

Using Corollary 1.3.8, one can prove the following two theorems.

Theorem 1.3.9. Let C = circ (@,...,3, b,...,b) be an nXxn circulant matrix with m

a's and (n-m) b's, where azb. Then

{ (ma + (n-m)b) (a—b)m'1 if ged (m,n) = 1
detC=

if ged (m,n) > 1.

Theorem 1.3.10. Let C = circ (ag, 2y, 9 0,...,0) be an nXn circulant matrix over

the field K which has a primitive nth root of unity. Then

s=0

n_ 2s

det C=a’ +a e L DS 5 0
0 2 (1) n-s ( S )(aoa?.) al
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4. Permutation Polynomials Over Finite Fields

In this section, g=p" is the nth power of a prime p, and Fy is the finite field of
order q. Almost all results in this section are cited from Lidl and Niederreiter's book
[22].

Before we study permutation polynomials over Fq, we observe that for every
function ¢:Fq—Fg, there is a unique polynomial f(x) € Fg[x] such that deg f < g-1 and
¢(a) = f(a) for all a € Fg. This polynomial f(x) can be found by the Lagrange interpolation

formula so that

=Y, 90100 ).
ceF,

q
Consequently, all permutations we will consider have degree <g-1.
Now, by a permutation polynomial (abbreviated PP) of Fq is meant a polynomial
f(x) € Fq[x] with the property that the polynomial function f:c—f(c) from Fq into Fg is a

permutation of Fq. From this definition, we immediately have the following result.

Theorem 1.4.1.
(D) Every linear polynomial f(x) = ax+b € Fg[x], a0, is a PP of F.

2) The monomial x™ is a PP of Fq if and only if ged(m,q-1) = 1.

For PPs of Fyq we have three useful criteria. The following property is useful for

proving the first criterion.

Lemma 1.4.2. Let a, s be elements of Fq. Then the following two

conditions are equivalent:
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(D) 2y al,...,aq_1 are distinct

q-1 { 0fork=0, 1,..,9-2

-1 for k=qg-1.

The first criterion is

Theorem 1.4.3. (Hermite's Criterion). f(x) € Fq[x] is a PP of Fq if and only if the

following two conditions hold:

(1) f(x) has exactly one root in Fg;

(2) for each integer t with 1 St<g-2and t # 0 mod p, the reduction of f(x)!

mod (x3-x) has degree < q-2.

In Hermite's Criterion, the reduction of f(x)t mod (x9-x) is a polynomial
g(x) € Fg[x] such that deg g(x) <q-1 and f(x)t = g(x) mod (x3-x). Since ¢4 = ¢ for all
c € Fq, we have in'fact f(c)! = g(c). Furthermore, the restriction t # 0 mod p is
superfluous in condition (2).

The following corollary follows easily from Hermite's Criterion.
Corollary 1.4.4. If d > 1 is a divisor of g-1, then there is no PP of Fq of degree d.
For the second criterion, we need characters of Fq. Let G be a finite abelian

group. A character % of G is a homomorphism from G into the multiplicative group of

complex numbers of absolute value 1. When we consider the finite field Fg, we have two

kinds of characters defined on Fg, additive characters defined on the additive group of Fq
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and multiplicative characters defined on the multiplicative group F:‘l If the additive

character Yo of Fq satisfies ¥o(c) = 1 for all ¢ € Fq, Xo is called the trivial character of Fq.

For additive characters of Fg, we have the following important result.

Theorem 1.4.5. (Weil's Theorem). Let f(x) € Fq[x] be of degree m 2 1 with

ged(m,q) = 1 and let  be a nontrivial additive character of Fq. Then

1Y 2@y 1 < @1 q'.
ceF,

q

The multiplicative character mapping all ¢ € Ffi into 1 is called the trivial

multiplicative character of Fg. If q is odd, the quadratic character of Fq is defined by

( 1 if ¢ is the square of an element of F:

ne) = l -1 otherwise .

Moreover, we can extend the definition of any multiplicative character y by setting y(0) =
1 if y is trivial and y(0) = 0 if y is nontrivial.

For a quadratic character, we have the following

Theorem 1.4.6. Let f(x) = a,x? +a;x + a, € F[x] with q odd and a, # 0. Letm

be the quadratic character of Fq. Then
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M)  ifal-42,2,%0

Y nen=

ek (@-Dn (@) ifa]-4aa,=0.

The following corollary is a special case of this theorem, in which we consider

f(x) = x2 + ax with a # 0.

Corollary 1.4.7 (Lemma 14.11, [18]). Letn be the quadratic character of Fq and

let a € F¥, where q is odd. Then
q

Y n@n@o=-1.

ceFy
Using characters, we can state our second criterion as follows.

Theorem 1.4.8. The polynomial f(x) € Fg[x] is a PP of Fq if and only if

ca% X (f(c)) = 0 for all nontrivial additive characters ¥, of Fq.
q
Our third criterion is stated as follows.

Theorem 1.4.9. Let f(x) € Fg[x]. Write

{f(b) - f(a)

T la;tban} .

D(f) =

Then f(x) is a PP of Fq if and only if 0 ¢ D(f).
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Finally, we study two special kinds of polynomials. We have necessary and

sufficient conditions for each of them to be PPs. The first is

Theorem 1.4.10. For odd g, the polynomial x(@+1/2 4 ax g Fy[x] is a PP of Fq if

and only if 1| (a2-1) = 1, where 1 is the quadratic character of Fg.

The second kind is the important class of linearized polynomials which we define

as follows.
! k-1 i .
Let k be a positive integer. The polynomial L(x) = Zaixq € Fqk[x] is called a
i=0

linearized polynomial of F ; over F. For linearized polynomials, we have
q

k-1 5
Theorem 1.4.11. The linearized polynomial L(x) = Eaiqu € Fqk[x] is a PP of Fqk
i=0

if and only if L(x) has only the root 0 in Fqk-

It is easy to see that each linearized polynomial L(x) of Fqk over Fq induces a
linear operator on the vector space Fgx over Fq. So, saying that L(x) has only the root 0
in Fok is equivalent to saying that the induced linear operator is nonsingular. Moreover, it
can be seen, from the definition of linearized polynomials, that the reduction mod (qu-x)
of the composite function of two linearized polynomials is still a linearized polynomial.
Hence, the set of all linearized polynomials of F k over Fq which are PPs of Fk forms a

k
group under the operation of composition mod (x4 -x). In fact, this group, known as the

Betti-Mathieu group, is isomorphic to GL(k,Fq). The one-to-one correspondence was
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originally pointed out by Dickson [12]. We will sketch Carlitz's proof of the

homomorphism property. For this purpose, we need the following

k-1 2
Theorem 1.4.12. LetL(x) = Yo xP' g Fqk[x] be a linearized polynomial. Then
i=0 :
L(x) is a PP of Fx if and only if det A # 0, where A = (a}?_]j), all subscripts being

computed mod k.

Theorem 1.4.13. The Betti-Mathieu group of linearized polynomials of F g over
Fq is isomorphic to GL(k,Fq).

Proof ([5]). Itis known that there exists a normal basis C, Cq,...,qu_I of Fqk over
Fq that consists of primitive elements of Fqk (see [29]).

k-1 -
Lety=L(x) = Zaiqu € Fqk[x] be a linearized polynomial which is a PP of Fqk-
i=0

Kkl Kl
For 0 < i < k-1, write o = Sa;; (¥ with each a;;e Fq. Also write x = 3x; {% and
j:Q i=0

k-1 :
y=2Y; qu. Note thatif x, y € Fqk, then all x; and y; are elements of Fq. In addition,
1=0

o - k.l k.] . H
E 1 I i 1
write x4 +q) Eziﬂt‘;q. Then we have Yy Cq = ¥ A X.Z .. -Cq . So
=0 i=0 st A7 RS

% _
Y= 2 a; X, where a5 =

j%o ;Z'l A2y jts, it

On the other hand, we have

ql

(e [kzl: . ]

=0
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and

It follows that

- i+ i3
where ()T denotes the transposed matrix of (&;). Let H= €@y and A = (a‘il_’j). Then
HA = (Eij)TH and so HAH'1 = (a_ij)T. Since H is nonsingular, det A =det (Eij) and
T(A) =(a; J-)T is a one-to-one mapping. From Dickson's work, the correspondence

L(x) > A > (Eij)T is a one-to-one correspondence.

k-l ; '
Let G(x) = .ZBiqu be a PP of Fqk and let B = (ng). It is easy to see that if

1=0

k-l g k j _ T
GL(Kx)) = .Z'yixq mod (x4 -x), then (YE'J.) = C = AB. Moreover, if HBH-! = (bjj)* and

=0

HCH'I = (El_])T’ thC;’l HCH-I = HAH'I HBH']' = (EU)T (BIJ)T' So (EU) = (EU) (51_])‘ This

completes the proof of the theorem.




17

CHAPTER 2
SET COMPLETE MAPPINGS ON FINITE FIELDS
1. Introduction

In 1942, H. B. Mann (see [23]) gave the following definition.

Let G be a group. Let 6:G—G be a mapping. Define 1:G—G by 1(g) =o(g)g
for all g € G. The mapping o is called a complete mapping of G if both ¢ and T are
bijections.

Mann used complete mappings to construct orthogonal Latin squares. Numerous
papers have since been written about complete mappings on groups and their applications
(see, for example, [3], [11], [13], [31], [32]).

In 1981, Niederreiter and Robinson constructed Bol loops of order pq (p, q
distinct primes) using complete mappings of the finite field Fp (see [27]). Later, they
discussed complete mappings of finite fields Fq (see [28]). Some other results
concerning complete mappings on finite fields have been discussed (see [14], [15]).

Another useful function is a so-called virtual path. It is defined as follows (see
(1.

A virtual path is a function : Z/(n)— Z/(n) such that the mappings x—7n(x),

x—T(x)-x and x—>7(x)+x are all permutations of Z/(n), where Z/(n) is the quotient ring

of integers Z modulo the principal ideal (n) of Z.
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From this definition, we se€ that on Z/(n), each virtual path is also 2 complete
mapping. Virtual paths of Z/(n) are useful in constructing and studying so-called
pandiagonal Jatin squares (see, for instance, [1], [2], [19], [34] and [36]).

In this chapter, we will generalize both the notions of complete mappings and
virtual paths to so-called set complete mappings of a finite field Fq. In Section 2, we will
give the definition of set complete mappings associated with the set S (abbreviated S-CM)
and search for some §.CMs when the set S 18 fixed. In Section 3, we will study some
properties of S-CMs. In Section 4, we will study relations between S-CMs and T-CMs
(set complete mappings associated with a set T). In the last section, we study the special
case where S is taken to be the set {0,£1}. Such S-CMs (which are the same as virtual
pathsifg=pa prime) are called very complete mappings and will be used in the next

chapter.
2. Definition and Existence of Set Complete Mappings

In this section, we will first give the definition of set complete mappings of the
finite field Fq. Then we give some methods to construct new set complete mappings
when we already have one such mapping. And in the major part of this section, we will

search for the existence of some specific kinds of set complete mappings of Fg.

Definition. Let S be a subset of Fg. A polynomial £(x) g Fqlx] is called a set

complete mapping, with the set S, of Fq (abbreviated S-CM) if f(x) + axis a PP of Fq for
allaeS.
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Note that a polynomial f(x) € Fq[x] is an S-CM of Fq if and only if, fora € S, the
polynomial f3(x) = f(x)+ax is an T-CM of Fq where T = {u-alueS}. Inthis case, S
may not contain 0 but T does.

Now, let f(x) be an S-CM of Fq. If 0 € S, f(x) itself is a PP of Fg. I£S = {01},
then f(x) is a complete mapping. If S = {0, 1,-1} and g is an odd prime, then f(x) is a
virtual path.

If ScFq, we have some trivial examples of S-CMs of Fg. Ifag-S={-blbeS},
ax + b is an S-CM of Fq for all b € Fg.

If we have an S-CM of Fg, the following theorem provides several methods to
construct new S-CMs of Fg. This theorem generalizes Theorem 2 in [28] and Lemma 1.6

in [1].
Theorem 2.2.1. Let 0 € SCFy, q = p? withn>1. Let f(x) € Fg[x] be an S-CM of

(1)  af(alx+b) +c is an S-CM of Fq for all a#0, b, ¢ € Fq.

@ If fo1: a#0, a € S implies a-l € S, then any polynomial representing the
inverse mapping of the mapping ¢ € Fq — f(c) is an S-CM of Fg.

3) If a € S implies -a € S, then -f(x) is an S-CM of Fg.

(4)  If SCFp, then (lofol1) (x) is an S-CM of Fg, where /is a linearized
polynomial of Fgq which is also a PP of Fg.

(5) LetaeFg. If (atsIse S} =S, then f(x) + ax is an S-CM of Fy.

Proof.
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(1) Letase F: and b, c e Fq. Foreachd € S, af(a1x+b) + ¢ +dx = a[f(a"1x+b)
+ d(a-1x+b)] + (c-abd). Since a-!x+b and f(x)+dx are PPs of Fg,
af(a-lx+b) + ¢ + dx is also a PP of Fq. So af(a-!x+b) +c is an S-CM of
F.

2) Let h(x) & Fq[x] be a polynomial representing the inverse mapping of f(x).
For all 0#a £ S, h(x) + ax = h(f(y)) + af(y) = af(y) + y = a(f(y) + a'ly).

Since a-le S, f(y) + a'lyis a PP of Fqand sois h(x) + ax. Hence, h(x) is

an S-CM of F.
3) Trivial.
n-1 i
4) Letlx)= .Zbixpl, q = p", be any linearized polynomial of Fq which is
1=0

also a PP of Fq. Write y = I-1(x). For all a € SCFp,
(lofol-1) (x) + ax = (lof) (y) + al(y) = I((y)) + l(ay)
= I(f(y) + ay)
Since f(y) + ay and I(x) are PPs of Fg, (lofol-1) (x) + ax is a PP of Fq.
So (lofol1) (x) is an S-CM of Fy.
(5) Since (a+s)eS forall se S, (f(x) + ax) + sx = f(x) +. (a+s)x is a PP of

Fy- Sof(x) +ax is an S-CM. This completes the proof.

Now, we search for some nontrivial, nonlinear polynomials which are S-CMs of

Fq. From Lemma 2.2.2 through Corollary 2.2.6, we consider q odd.

Lemma 2.2.2. Let f(x) = ax(@*1)/2 + bx € Fg[x]. Then f(x) is an S-CM of Fq if

and only if (b%-a2) =1 = M((b+c)2-a2) for all ¢ € S, where 1 is the quadratic character of
Fq.
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Proof. The result follows from Theorem 1.4.10.

Using this lemma, we can prove

Lemma 2.2.3. Let S = {0, a;, a2,...,am]qu. There are a, b € Fq, with az0, so
that the polynomial f(x) = ax(4*1)/2 + bx is an S-CM if and only if there are -u, -v ¢ -S

satisfying u#v and (n(u), n(uta,),...Nu+a)) = M), n(v+al),...,n(v+am)).
Proof. By Lemma 2.2.2, f(x) = ax@D/2 L px e Fq[x] is an S-CM of Fq if and
only if n(b2-a2) = 1 =n((b+a,)%-a?) forall 1 <i < m. The last statement holds if and

only if 1(b-a) = (b+a)#0 and n(b-a+a;) =M (b+a+a)#0 forall 1 <i<m.

For necessity, we take u = b-a and v = b+a. For sufficiency, we take

a =271(v-u) and and b = 2-}(u+v). This completes the proof.

Note that for u and v in Lemma 2.2.3 with u#v, u,v and v,u generate two distinct

S-CMs of Fq of the form ax(@*1/2 + bx with a#0.

Now, we can estimate the number N of S-CMs of the form ax(q'*l)”2 + bx with

a#0. Itis the following

Theorem 2.2.4. Let0 ¢ Sc_:Fq with | S | = m. Then the number N of S-CMs of
Fq of the form ax(@ D24 bx with a=0 satisfies N > M%Em—zm

Proof. Write S = (0, aj,..,8,.1}. Let A = {(u, u+ay,...,u+a_ ) | -u € Fg-S}

and B = {(X_,Xy,....Xp.1) | €ach x;=+1}. Then| Al=g-mand | B |=2™
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Define a mapping 6:A—B by, for each (u, u+ay,...,u+ay 1) € A,
o((u, utay,...,u+a 1)) = (M), n(u+ay),...,n(u+ay 1)). By Lemma 2.2.3, there are
aeF*and b € Fg so that f(x) = ax(@*1)/2 4 bx is an S-CM of F_ if and only if there are
-u,-j e Fq-S satisfying u#v and (M (u), n(u+ay),...,n(u+ay 1)) = M(v),

n(v+ay),...N(v+ay,_1)). The last statement means that ¢ is not 1-1.

Write B = (B,...,.B_,}. Foreach 1 <i<2™, let the inverse image of B; be
211‘1

U'I(Bi) = {(u, utay,...,uta, 1) € Al o((u, u+ay,...,uta, 1)) = B;}. Theng-m= lAl=
2{11
EIG‘I(Bi) |. Note that for each 1 <i<2™, the set O"I(Bi) generates exactly | o 1(B) I
i=1

(1071(B;) 1 -1) S-CMs of Fy of the form ax(@*1/2 + bx with a#0. So
i q

7= . ™ . o™
Hi= 21. lo(B) 116" (B)1-1) = Z{ lo'(B,) I*- le 1o'(B))

2

2m
> i=1 _ \ | -1 Biil= (q-m) s = (Q'm)(Q'm‘z )
Z oB) 1= @m 2=

21‘1‘1

i=1

since

- ’
i ZIc‘%Bi)F : zzuc-loain =Y. [lo‘l(Bj)l-io‘l(Bi)l]zzo
1= i=1

1<i<j<2™

In Theorem 2.2.4, we see that the lower bound for N depends only on q and the

cardinality of S.
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Using Theorem 2.2.4, the following existence property is easy to prove.

Corollary 2.2.5. If 0 £ SCFq and g> | S | +2'5!, then there are at least 2 S-CMs
of Fq in the form ax(@1/2 + bx with a F;(l and b e F.

Proof. From Theorem 2.2.4, there is at least one S-CM of Fq in such form.
Finally, it is easy, in the proof of Lemma 2.2.3, to see that if ax(@1D/2 4 bx is an S-CM

of Fg, so is -ax(@*1/2 + bx. This completes the proof.

The lower bound in Theorem 2.2.4. is the exact number when we consider the

case S = {0}. We have

Corollary 2.2.6. The‘ number N of all PPs of Fq' in the form ax(@*1/2 4 bx with
a#0is N = @423

Proof. Note that S = {0}. Write a = 2-1(v-u) and b = 2-1(v+u). By Lemma
2.2.3, ax(@D/2 + bx is a PP of F, with a#0 if and only if u, v € F-S, u#v and n(u) =

N(v). Note that we have (w such choices for u and v. SoN = ﬁ%@ .

In Corollary 2.2.6, if we allow a=0, the number of all PPs of Fq in the form

2
ax(@D/2 £ bxis N = (q_;)_ . This number was found by G. Mullen and H. Niederreiter
[26] when they investigated the group structure of the set of all PPs of Fq in such form

under the operation of functional composition.

From this corollary, the lower bound for N in Theorem 2.2.4 is best possible.
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(43-3)(43-11)
The following is an example: Let S = {0, + 1}cF,3. We have exactly N = g o

160 S-CMs of Fy in the form ax?2 + bx with a#0.
Now we search for another type of S-CM of Fqk, where k is a positive integer > 1

and q is a prime power.

Lemma 2.2.7. Let f(x) = bx + byx +..+ bk_lqu-l € Fqk[x]. LetA= (biFfi) with
i-jmod k. Let 0 & ScFq. Then f(x) is an S-CM of Fqk if and only if every element of -S
is not an eigenvalue of A.

Proof. From the definition, f(x) is an S-CM of Fqk if and only if f(x) + ax is a PP
of Fqk forallae S. Since a € Fg implies acli = a for all 0 <i £k-1, we have, by Theorem
1.4.12, that for all a € S, f(x) + ax is a PP of Fqk if and only if det (A + aI.k);ﬁO where Ik
is the kxk identity matrix. The last statement is equivalent to the fact that every element

of -S is not an eigenvalue of A.

Using Lemma 2.2.7, for k=2 or 3, we can find the total number of linearized
polynomials of quc over Fq which are S-CMs of Fqk- Before proving this in Lemma
2.2.8, we summarize the proof of Theorem 1.4.13 as follows.

Let f(x) = box + byxd +..+ b],;.lqu_1 eF k[x]. By Lemma 2.2.7, f(x) is an
S-CM of Fqk if and only if every element of -S is not an eigenvalue of the matrix A =
(bg) upon taking i-j mod k. Carlitz already proved (see [5]) that the Betti-Mathieu group
is isomorphic to GL(k,Fg), the group of all kxk nonsingular matrices over Fq under the
composition of mappings f(x)>A—A = HAH'! with H = (1:‘1i+j), where 1, 'rq,...,'ch_l

form a normal basis of Fqk over Fq. Note that A and A have the same minimal and the

same characteristic polynomials since A and A are similar. Hence f(x) is an S-CM of Fqk

if and only if every element of -S is not an eigenvalue of A. Hence, the number N of
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k-1 : =
S-CMs of Fqk of the form byx + byxd+..+ b ;x4 "€ Fqk[x] is equal to the number of A
in GL(k,Fq) which have no eigenvalue in -S. Since each Ae GL(k,Fq) represents a
unique non-singular linear transformation of Fqk over Fg, N equals the number of non-

singular linear transformations of Fqk over Fg which have no eigenvalue in -S.

Lemma 2.2.8. Let 0 & ScFqwith [ S |=m.
(1) The total number N7 of S-CMs of qu in the form b0x+b1xq € Fqg[x] is

N, = (@129 - ) g @2) + (%) q (q+D).
(2)  The total number N5 of S-CMs of Fqg in the form bx + byx? +

bzxqze F 3[x]is +
Ny=@*-D@-q)a*q) - (I’ @-D@- 2%’ +

(@ DR@3) - (5 @+a+1)(@?+a)a? -

Proof. From the remark above, we count the number of non-singular linear

transformations of Fqk over Fq which have no eigenvalue in -S.

(1) k=2. Fix O;Ita £-S. Foreachue Fzz, let A, be the set of non-singular linear
transformations of qu over Fq which have u as an eigenvector associated with the
eigenvalue a. It is easy to see that T(bu) = a(bu) forall b & F:. So Ay = Apy for all
be F:. Moreover, if u;, u, € P:2 so that u,#bu, for all b € Fgq, then there is exactly one
non-singular linear transformation al of qu over Fq so that al(u;) = au; and al(u,) = au,
because uy, u, form a basis of Fqg over Fg. So, there are exactly ng;ll = q+1 distinct sets
Ay. We write u as a representative in the set {bu | b € F;]. Then we also have
| Aglr'\...hA;I | =1 for arbitrary / > 2 pairwise distinct elements uy,...,u;. Itis easy to

see that | A5 | = q2-q. So the number of all non-singular linear transformations which

have a as an eigenvalue is
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q+l
Y, 0 ia; nenag = @@ S e
all U 0, I i=2

- (@ D@9+ ) =q@®1q

by the inclusion-exclusion principle.

So we already have N, = (q2-1)(g%-q) = (4> (@) - &1 q@2)+(5)a@+D

1S 1= 1, and N, = (1)(@0) - 9(q>2) = (@ 1@ - C1)a@>2) + 3 )a@+)
ifIS1=2.

Now we consider m > 3. For each O#a € -S, write B, for the set of all non-
singular linear transformations of F , over Fq which have a as an eigenvalue. From
previous work, we already have IB, | = q(q?-2). Leta,b € -S with a#b and ab=0. Then

for u;#u,, there is only one Tﬁl’ﬁz e B,NBy, so that Tu (_ u;)=au;and T

111 112(_2) =

bﬁz. There are exactly g+1 choices for i; and there are exactly q choices for u, whenever

uy is fixed. So|B,NBy | =q(q+1). Since the dimension of F , over Fq is 2, a linear
q

transformation of F , over I-Tq can have at most 2 eigenvalues. So BalmB a N...NB a{=¢
q

if I > 3. By the inclusion-exclusion principle, the number of non-singular linear

transformations which have an eigenvalue in -S is (m1 1)q(q2 -2) - ( )Q(q+l) Hence
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- -1
N, = (@>-1)(@%q) - " Ha(a®2) + (5 Halg+D).
(2). k=3. FixOz2ae-S. Foreachue F:3, let A, be the set of non-singular

linear transformations of F 5 over Fq satisfying T(u) = au. By an argument similar to that
q

3
in (1), there are exactly o 24q+1 distinct sets A=, | A= | = (g3-q) (q3-q2) and
q_l q u u

| Ag NAg, 1= q3-q2 for U #u,, where U is a representative of the set {bulbe F;} . Note
A (@%+q+1)(g>+q) : : Y =
that there are in total 2 such intersections AalhAﬁz with u;#u,. Now, let uy,

u, and uy be pairwise distinct. If u;, u, and ujy are linearly independent, then

(@Z+q+1)(@*+a) o3-q% _ (P+a+1)(a*+a)e®
6 ql 6

I AalmAﬁznAEBI = 1. Note that there are exactly

such linearly independent triples. If u;, u, and uj are linearly dependent, then

2 2 2
I AEIGAEZQAEB | = g3-q2. Also, note that there are exactly @ +q+lé(q 1) -(‘:‘q_'l1 -2) =

(@+q+1)(q%+q)(g-1)
6

such linearly dependent triples. Similarly,

( qP-q? if u,,...,u, are in the same plane
| Ag N.OAG =1 _
1 I L 1 otherwise )

(@2+q+1)(@%+a)(a-1)...(q-1+2)
!

for4 </<q+1. Note that there are exactly I-tuples which are in

2 2 2 - 3
the same plane, and there are exactly (4 +Iq+1) - el +?)$q D@H2) 1 ples which

are not in the same plane, for all 4 </ < q+1. If [ 2 q+2, then uy,...,u; are not in the same
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2
plane. So, for I 2 q+2, | Aalm..nA-ﬁIl = 1 and there are exactly (4 +Iq+1) such [-tuples.
By the inclusion-exclusion principle, the number of non-singular linear transformations

which have a as an eigenvalue is

D, D 1AgALAG)

1.11.....1.11I

2 g 2 %)
=(q2+q+1)(q3_q)(q3_q2)_[q ;@_1}(13_{12)_2(_1)! (q +q.+1)(q +O.;) (Cl"l) ses (Q“Hz) (qa_q"")
=3

It

+1

qz:( 1)’ [[q +q+1} (@2+q+1)(q? +c£1)l(q-1) (q-l+2):l 2 1) [q +q+1]
I=q+2

=q3(g3-1) (@2-1) - @3(g3-1) + ¢3.

If m = 1, we have N3 = (q3-1)(q3-q)(q3-q?). If m = 2, then we have N3 =
2-1
(@3-1)(@3-9)(@3-a?) - (]) [63(@3-1)(@2-1) - g3(g3-1) + g3
Now consider m > 3. For each Oza € S, let B be the set of non-singular linear

transformations which have a as an eigenvalue. Then | B, | = q3(q3-1)(q2-1) - q3(g3-1)+q° =

a3(g3-1)(q%1) - g3 (q3-2).
Let a,b € -S with ab#0 and a#b. For u #u,, let Cﬁliz be the set of all non-singular

linear transformations T so that T(u;) = au; and T(u,) = bu,. Then | Cil Ezl =q3-q2 and

there are exactly (q2+q+1)(q2+q) such sets. Itis easy to see that for (uy,up)#(us,uy),
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1 ifeitheru =uyandu;, Uy, u, u, are linearly independent
1C. . NnC_ _ I= or ﬁfﬁ 4 and El, u,, u3 are linearly independent
o L Uplty
0 otherwise
Note that there are exactly (q2+q+1) (q2+q) q2 such intersections | C— =y C== 1=1,

u I.12 |.l3ll4

Also note that if / > 3, then for all pairwise distinct ordered pairs (ﬁi,vi), 1 <i<I/, we have

(" 1 ifeither ﬁl !, Lo V: are on the same plane and El,?l,Vz are
I linearly independent, or v 1= .=Fi,ﬁ 1o ’ﬁ: are on the same plane
M = - e : 2
I i=1 Cﬁ_,v! - < and U,,u,,v, are linearly independent
\_ 0 otherwise.
2(q24q+1)(a%+0)q2(q-1)...(q-1+2) 4
There are exactly such intersections with | (M C_ =1.

!
! i=1 ui’vi

!
Moreover, if [ > q+2, (M C. _=¢. By the inclusion-exclusion principle, we have
L= u.,v.

| B,NBy | = (@+q+1)(@2+q)(a3-q?) - (@2+a+1)(q?+q)q?

2 2 ) y
+ {%( 1)1' -1 2(q7+q+1)(q +Cf[)(3 (q-1)...(q-1+2)

= (@2+q+1)q3(q2-3).

So, if m = 3, then
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Ny=(@- D@-0(@3-gD-CIa3@3 D@2 21+a31+C 5 )a2+a+ Dad(@-3).

Finally, let m > 4. For all distinct a,b,c € -S with abc#0, T € BathmB cif and
only if there are U;, U, and U5 so that Uy, U,, uj are linearly independent over F, and
T(u,) = auy, T(u,) = bu, and T(u3) = cu. Note that there are cxacﬁy (q2+q+1)(q2+q)g?
choices of such ordered triples (uy, Uy, U3). So|B,NByNB = (q2+q+1)(q2+q)q2. If
there are distinct a,b,c,d € -S with abcd#0, it is easy to see Bamechde =¢. By the
inclusion-exclusion principle, we have that the number of non-singular linear
transformations which have :at least one eigenvalue in -S is
™G3 (g3-1) (@2+@31-( a2+ 1a3@2-3) + (5 @+a+ 1)@ +a)a>
So Ny=(q3-1)(@3-q)(q>-q2)-( )33 1)@=+ 1+ Nq2+a+1aP@2-3)-

(ms.' l)(c12+c1+1)(q%qiqz. This completes the proof.

It seems, from Lemma 2.2.8, that a closed form for the number Ny of S-CMs of

. k-1 | ,
Fqk in the form b x+b,x%+...+b, ;x4 " will become more and more complicated when k
becomes larger and larger. The author wonders whether or not there is a nice closed
form for N,. From Lemma 2.2.8 and its proof, it seems that N is a function in the

variables q and | S | so that the highest exponent of q is kK and the highest exponent of

IS 1is k.

Now we are ready to prove the following existence theorem.
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Theorem 2.2.9. Let 0 € SCFj and letk 2 2. Then there is an S-CM of Fqk of the

form a0x+a1xq+...+ak_1qu-1 with degree > 1, except for the case k = 2, ¢ = 2 and
S=F,.

Proof. At first, we consider k > 5. It is easy to see that there are distinct integers
I, t>2 with [+t = k. Itis well known that there are irreducible polynomials g;(x), g,(x) €
F q[x] which have degrees [ and t, respectively. Let g(x) = g;(x) g,(x) and let A be the
companion matrix of g(x). Then A € GL(k,Fq) and g(x) is the minimal and characteristic
polynomial of A. Note that g(x) is not a power of any irreducible polynomial in Fq[x].
Let f(x) = a0x+a1xq+...+ak_1qu_1 be the corresponding linearized polynomial of A, the
same as in the Carlitz's proof of Theorem 1.4.13. Write
A= (a.fi) taking i-j mod k. From Carlitz's proof, A and A are similar. g(x) is also the
minimal and characteristic polynomial of A. Since no element of -S is a root of g(x), f(x)
is an S-CM of F , by Lemma 2.2.7. We claim deg f > 1. Indeed, if deg f= 1,then A =

qu

; =} b .
diagonal (ao,ag,..-,a A ). In this case, g(x) is a power of the minimal polynomial of a

over Fq and we get a contradiction.

Now, for k = 2 and 3, we note that if a linearized polynomial f(x)l' £ Fqk[x] is an
Fq-CM of Fqk' then f(x) is an S-CM of Fqk' So we consider S = Fq incasesk =2 and 3
except for the case q =2 and k = 2.

Letk =3. Since q > 2, from part (2) of Lemma 2.2.8, the number of all S-CMs
of Fq3 in the form aox+alxq+a2xq2 satisfies N3 2 6q3 > g3-1. So there is at least one
linearized polynomial f(x) € FQSIX] which is an S-CM of Fq3 anddeg f> 1.

Letk =2. From part (1) of Lemma 2.2.8, if q 2 3, N, > 2q2 > q2-1 and so there

is at least one linearized polynomial f(x) € qu[x] which is an S-CM of qu and deg f> 1.

Forq=2and|S|=1,N, = (22-1)(22-2) = 6 > 3 = q?-1 and so there are three linearized
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polynomials in F4[x] which are S-CMs of F, with degree > 1. Forg=2and |S1=2,
N, = (22-1)(22-2)-2-(2%-2) = 2 and so all S-CMs of F; are linear.

Finally, we consider k = 4. Since F 4 =F 2, q2>4and ququ:JS, there is at
least one linearized polynomial of the form a x+a,x9 € Fq4[x] which is an S-CM of Fq4

with degree > 1 by the case k = 2. This completes the proof.
3. Mullen's Conjecture

Let p be a prime and q = p" with n 2 1. Theorem 1.2.5 says that there is a
complete local field K of characteristic 0 so that if Oy is the ring of integers in K, then
Og/pOg = F. From the same theorem, O consists of all g-1st roots of unity. Let W be
the set of all (q-1)st roots and 0. Then Og/pOg = {@+pOk | ® € W}. Trivially, if ],
o, e W, then @,+®, = @3+pa for some @3 € W and for some o & Og. Since
Ok/pOx=F, we embed Fy onto W. Moreover, if a € Fg, we use a to denote the

corresponding element of a in W.

Lemma 2.3.1. Let S = {O,al,...,am_I]ch with 1 <m <q-2 (so q=3). Let
f(x) e Fq[x] be an S-CM of Fq. For 1 €1 < m, let the reduction of [f(x)]i mod (x9-x) be

g-1
fzoci,fxq-l*f. Then for each 1 <k <m and for each 1 <j < m, there is ;€ O so that

r,+1

Kl ko _k-1-i - 5
- O =p

B, where pXIlk Gf (p.k) = 1,1, =0).




33

Proof. Let T be the lifting of f on Oy, i.e., if f(x) = 60+81x+...+6Ix‘ then
T(x) =843, x+...+3x". Fix 1 <k<mand 1<j<m. Consider Ew(f((_ﬂ)“"a fﬂ)
WE

On one hand,

where by & W satisfies %@)ﬁj@ = B_o_) +po., for some o € Oy, and

. kA
a.:ZocL b_ aOK
1 w (1]

weW

Since f(x)+ajx is a PP of Fq, bg, ranges over all elements of W whenever f(u))+ajm ranges
over all elements of Fq, i.e., whenever @ ranges over all elements of W. Since2 <k <m

"

<@-1 and b ranges over all elements of W, X b-=0. Since pk Il k, it is easy to see
weW

r-i+l

that p™*! | (5 for 1 <i<r. Sop™™ I (% piforall 1<i<k. Thisimplies

k

ke, i 1 &0
Z(i) ploy=p* B
i=1




34

for some Bj ¢ Og. So there exists _Bj e Ok so that

= k o+l o
Y @@ +a@=p" ;-

weW

On the other hand,

k - . .
Y @@ +am =y, O ), o (@) -
@eW i=0 GeW

fi=0, Y® =0. fi=k,

WEW
Y E@n=p"y

weW

for some y € Oy since f(x) is a PP of Fq. For 1 <i<k,

. q-l
fx)]'= ) ¢,

sl
X mod (xq—x)

l

from the assumption. So for 1 i<k,
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Hence,

r+1
2(f(‘)+am) —p‘k*LvZ( @ DG, +PY) 2( ECRICH B

for some ¥" € O.

Combining both results above, we have
< k. k- I+l
—K-1 — k "
z(l) aj (q' 1) ci.k»i =) Bj
i=1

for some [5;.' e Og. Since ; and (q-1) are units in O, we have

for some Bj € Og. This completes the proof.

Solving for ¢; , ; in Lemma 2.3.1, we have the following key theorem in this

section.

Theorem 2.3.2. LetO e S,gl-"‘q with2<1S1<q-2. Letf(x) e Fq[x] be an S-CM

. q-1
of Fy. For1<i<IS|,letthe reduction of [f(x)]! mod (x3-x) be ¥ ¢; ;x41-L Then for
= "

1<k<I|Sland1<i<k
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for some oy ; € Oy, where plk Il k.

Proof. Let|S | =m and write S = {0,a;,...,3,,.1} as in Lemma 2.3.1. By

Lemma 2.3.1, all ¢; Ko <i <k, satisfy

forall 1 £j <m. Takej=1,2,...k-1. Then c;; ; are common solutions of the system

of k-1 linear equations

& i r+1

k. _k-i-1 _ &
2(1) aj yi_p BJ,

i=

1<j<k-1. LetA bf; the (k-1)x(k-1) matrix of coefficients of all equations in this system

and let B;, 1 <i<k-1, be the (k-1)x(k-1) matrix obtained by replacing the ith column of

A with the column
+1
p'K" B,

ri+l
pEeB o

k-1
and fixing all other columns of A. Then, in O, det A = (det V) 'Hl (li() where
1=
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V= (a}‘"'l) is a Vandermonde matrix generated by @ ,...,3_1. Since aq,..,a  EWare
all non-zero and distinct, det V is a unitin Og. For each 1 <i<k, itis easy to see that

1
det B, =pk A, T

] (ljc) for some A;€ Og. By Cramer's rule, we have that for
JA .

1<i<k,

for some O ki € OK

Now we are in a position to prove one of our maiﬁ results in this section.
Theorem 2.3.3 (Mullen's Conjecture). Let0 € S<;I-"‘q with | S 1 £q-2. If f(x) is an
S-CM of F, then thz? degree of the reduction of f(x) mod (x%-x) is <g-1-1 S |.
Proof. If1 S |=1, it is a part of Hermite's Criterion. So we consider | S | > 2.
Let the reduction of f(x) mod (x3-x) be %‘,;cl’i x3-1-1 Since 0 € S, f(x) is a PP of Fq and
i=
S0Cy = 0 by the same theorem above. From Theorem 2.3.2, we have that for

1<i<IS1-1,

r1+i+l

= P

S A T
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for some o} ; € Oy, where pr1+i I (1+). Socy;€epOg forall 1<i<ISI1 Le,cy;

=0in Fq. Hence, the degree of the reduction of f(x) mod (x9-x) is <q-1- 1S |.

As we mentioned in the proof of Theorem 2.3.3, Mullen's Conjecture is, indeed,
a part of Hermite's Criterion when S = {0}. If S = {0,1}, Niederreiter and Robinson
(see [28]) proved this theorem for odd q, and Wan proved this theorem for q even in
1986 (see [40]). Basically, their techniques are the same. The method we used is a
generalization of their methods.

Now, we reach a position to discuss the size of the set S. We have the following

Corollary 2.3.4. Let ¢+S c;l-"'q. Then there is an S-CM of Fq if and only if SQF:.

Proof. At first, we consider S = Fgor S = F; Let TcS with | T1=q-2. Iff(x) &
Fq[x], with deg f < g-1, were an S-CM, then f(x) would be a T-CM. From Theorem
2.3.3, deg f € q-1-(g-2) = 1. So f(x) = ax+b for some a € F*. Since S QF:, -S ;F:
and so a € -S, where -S = {-s | s € S}, i.e., -a € S. But in this case, f(x) + (-a)x = b
would be a constant polynomial and also a PP of Fq. We get a contradiction.

Let S ;;F;. Then -S Q_F:. Choose a € F:-(—S). Then a+s#0 for all s € S. Let

f(x)=ax. Then f(x)+sx is a PP of Fq for all s € S and so f(x) is an S-CM of Fq. This

completes the proof.

From this corollary, we see that 1S < q-1if0OeSand|S1<q-2if0¢ S.
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4. Properties and Comparisons

In Section 2, we fixed the set S and searched for polynomials in F [x] which are
S-CMs of Fq. In this section we consider the converse problem, i.e., given a polynomial
f(x), we consider the question of whether there is a set Squ so that f(x) is an S-CM of
Fq.

Let f(x) € F,[x]. If the reduction of f(x) mod (x9-x) is a linear polynomial ax+b,
we have already seen in Section 2 that for any Squ with a ¢ -S, f(x) is an S-CM of Fq.
Hence, the maximum cardinality | S | of S is g-1.

Let / be the degree of the reduction of f(x) mod (x%-x). If /=2 and /1 (g-1), then
f(x) is not a PP of Fq by Corollary 1.4.4. Hence, if /=2 and /1 (g-1), there is no Squ
so that f(x) is an S-CM of Fq.

Now we consider linearized polynomials.

Theorem 2.4.1. If f(x) is a linearized polynomial of F ,[x] over Fq, there is at
' q

least one non-empty subset SCF | so that f(x) is an S-CM of Fqk' Moreover, the
q

; o a ; -2)(qk-
maximum cardinality of all such subsets is > 1 + (QLZ%E—Q

: k-1 k-1
Proof. Write f(x) = a0x+alxq+...+ak_1xq . Let g(x) = alxq+...+ak_1xq and

letA= (b?_lj). taking i-j mod k, where b, =y and b; = a; for 1 <i <k-1. Leth(y) =det A.

Note that h(y) is a polynomial of degree 1+q+...+q¥"! in the variable y. By Theorem

1.4.12, for a ¢ Fqk’ g(x)+ax is a PP of Fqk if and only if h(a)#0. Let
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T={ac Fqk | h(a)#0}. Then g(x) is an T-CM of Fqk' Since h(y) has at most

k-1 : k.1 2)(gk-1
1+q+...4+gk1 =g'q_—11‘00ts in F k,lleqk-%q_—l-:l+(g—)q§_51'—l.
Let S = {a-a,laeT}. Itiseasy to see that f(x) is an S-CM of F, and that| S | =

| TI. This completes the proof.

We next consider polynomials of the form ax(4*1)/2 + bx. In this case, q is odd.

First, we need the following two lemmas.

Lemma 2.4.2. Let ¢=SCF, and let f(x) & Fy[x]. Let D() = () 4p e F,
with a#b}. Then f(x) is an S-CM of Fq if and only if SN(=D(f)) = ¢ where -D(f) =
{-alaeD(f)}. |

Proof. For a € S, f(x)+ax is not a PP of Fq if and only if there are x, y, € Fq

with x 2y, so that f(x )+ax, = f(y,)+ay,. The last statement is equivalenttoa e -D(f).
We notice that Corollary 2.3.4 is also easily proved using this lemma.

Lemma 2.4.3. Let q be odd and f(x) = x@*1/2. Then | D(f) | = %2 and
+1¢eD(.
Proof. Write g(x,y) = m‘))(—f)fﬂ Leta, beF, with asb. If eithera=0orb =0,

then g(a,b) =+ 1 e D().

Now, consider ab#0. Let ¢ = ab-! so that c#1.
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1 1
g ) = BID_ (@12 4o @D b, 4ab@3)2 1@ D2 = b DR, L
- _

c_

If c(@ /2 = 1, we have g; (a,b) =% 1. Consider c@1/2=_1. Then

(q+1)2

S 1_42-c1_7 2 )
gab)==% = =% 1 -+[1+c-1]'

Moreover, letc;, ¢, € F: satisfy c(lq'l)p‘ =-1= céqd}ﬂ Then 1 + 6—12— =1+ % if and only

S 2B s o 1 i . i
if cy=c,. And 1+ G -1 o if and only if - o1 + &1 o The last result is

equivlaentto 1-co =1- cl and so equivalent to ¢;c, = 1.
1 »

For a non-square ¢ € F;, there are exactly q-1 ordered pairs (a,b) satisfying ab-1
=c. Since there are exactly g;'_,—lnon-squan:s in Fq, there are totally (q—l)-gé—1 such ordered
pairs. From results in the last paragraph, we see that 2(g-1) ordered pairs (a,b) take 2
distinct values = (1+ f_—f) where ¢ = ab-1 or % = ab-1. Also from the last paragraph, g¢
assumes

q-1
s el

2(q-1) 2

distinct values of the form + (1 + ﬁ—l) with ¢ non-square. Also note 1 + 52—1 # *£1 for any

ce F:nndc;tl. sO|D(ﬂ|=€§+z=9;—3.
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Theorem 2.4.4. Let q be odd and let f(x) = ax(@12 Ly e Fq[x] be non-zero.
Then there is a non-empty subset SCF, qs° that f(x) is an S-CM of Fq. Moreover, if a0,

the maximum cardinality of all such | S | is gzj

Proof. If a=0, f(x) is linear and so the result holds. We consider a#0. Let g(x)
= ax@*D2 From Lemma 2.43,1D(g) | = . Let T =Fy -(D(g)). By Lemma 2.4.2,
g(x) isa T-CM of F. Ttis easy to see that| T = 3 LetS={tblteT). Then f(x) is

an S-CM of Fyand IS | = %3

In this part, we consider difference permutation polynomials. Such polynomials
are a special case of planar functions and give rise to affine planes (see Dembowski [9]

and Dembowski and Ostrom [10]). They are defined (on finite fields) as follows.

Definition. A polynomial f(x) € Fq[x] is called a difference permutation

polynomial if for all a F; the polynomial f,(x) = f(x+a) - f(x) is a PP of F.

For odd q, it is easy to check that quadratic polynomials are difference

permutation polynomials.

Theorem 2.4.5. If f(x) € Fq[x] is a difference permutation polynomial, there is no
subset S of Fq so that f(x) is an S-CM of Fq.
Proof. From Lemma 2.4.1, it is enough to prove D(f) = Fq. Fixae F: By

definition, g(x) = f(x+a) - f(x) is a PP of F, and so is [%'-2')—{(? . This implies D(H)2F

and the proof is complete.
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In the remaining part of this section, we consider a fixed non-empty subset of Fq
and a fixed polynomial f(x) € Fq[x] which is an S-CM of Fq. Using this polynomial, we
will generate some new S-CMs of Fq associated with the same set S or with a new set T

which satisfies some conditions.

It is known that a polynomial f(x) is a PP of F if and only if its normalized

polynomial is a PP of Fq. (The normalized polynomial of f(x) = aox“+a1x“'1+...+an,
-1

a,a;

n

1 2,3,
a,#0 is defined to bef(x) = a] [f(x - —5— ) - f( -

)] if ged (n,g) = 1 and
fx) = a;)l [f(x)-a,] if ged (n,q) > 1). This property is no longer true for complete

mappings (see [28]). Even so, we have

Theorem 2.4.6. Let ¢=ScF q Let f(x) = aixl + a;_lxl‘l+...+a1x+a0 € Fq[x] with
a20, and let T(x) be the normalized polynomial of f(x). Moreover, let T = a'llS =

[a}ls IseS}. If f(x) is an S-CM of Fq, then f(x) is a T-CM of Fy.
Proof. From the definition of normalized polynomial, there is b € Fy so that
fx) = a}l[f(x+b) - f(b)]. From Theorem 2.2.1, f(x+b) - f(b) is an S-CM of F since £(x)

is an S-CM. Now, for a}ls e T, T(x)+a) sx = a [f(x+b) - f(b) + sx] is a PP of Fy. So
T(x) is a T-CM of F.

Let q);tSch. If f(x) is an S-CM of Fq, its normalized polynomial f(x) may not

be an S-CM of Fq. For example, let's consider S = [O,illcFB and f(x) = 2x7. By

Lemma 2.2.2, f(x) is an S-CM of Fy5. Now T(x) = x7 by the definition. 1(0-12) =
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n(52) = 1 but N((0+1)2-12) =M (0) = 0 = M((0-1)2-12) by definition of quadratic
character. By Lemma 2.2.2, T(x) is not an S-CM of Fq.

Part (4) of Theorem 2.2.1 can be generalized as the following

k
Theorem 2.4.7. Let q = p" and ¢#ScF,. For any 0<k<n,letSP =
k .
{(aP" la€S}. Then f(x) = axl+a, ;xFl+. +a;x € F[x] is an S-CM of Fy if and only if
- k ok koL pk
for 0 <k <n, fi(x) = a? xf+a}’_1xf'1+...+a‘1’ xisan §* -CMof F.
Proof. It iS enough to prove that if f(x) = a:xf+...+a1x € Fq[x] is an S-CM, then

f,(x) = aPxl+...+af x is an SP-CM.

Let g(x) = xP. By Theorem 1.4.1, g(x) is a PP of Fq since (p,q-1) = 1.

Since f(x) is an S-CM of Fq, f(x)+ax is a PP of Fq forallae S. Now, foraeS,
(gofog D) (x)+aPx = g(f(g1(x))) + gla-g1(x) = g(f(g 1)) + ag (x). Write g1 (x) = .
Then we have (gofog-1)(x) + aPx = g(f(y)+ay). Since f(x)+ax and g(x) are PPs of Fq,

(gofog-1)(x)+aPx is a PP of F, for all aP e SP. Now

(gofog'D(x) = g(f(glx)))

= g(a[g l(x)]H+...+a,871(x))
= g(a)-g(lg l()1H+...+g(a))-glg 1(x))

=2y [g(g 1) +a-g(g (%)

= arxl+...+alx

= £,00)
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Hence, f,(x)+ax is a PP of F, for all a” & 8. So f;(x) is an S*-CM of Fy.

Letq=p"and 0 <k <n. Let ¢#ScF;. Letf(x) = ajxl+..+a;x be an S-CM of
Fg. Let g(x) = xP¥, By Theorem 2.4.7, (gofog")(x) = (alxv“'k+...+a1;“'k ) is an
Spk—CM of Fq. Note that | SK1=18 1. If we just consider (gof)(x) = (a[x’+...+a1x)f’k,
this polynomial may be a T-CM of F associated with some other subset T of F. But
| T | may not be eqﬁal to| S I. The following is an example.

Consider q = p2 and f(x) = x. Then f(x) is an (F;-{-1}) -CM of F. Let
g(x) = xP. Then (gof)(x) = xP = g(x). Now D(g) = (B®E@ | ab e F, azb) =

2.1

((>-2)*' IVabeFy, azb) = (' lae F7). Then | D(@ | = Pl=p+l LetT=
Fq - (-D(g)). By Lemma 2.4.2, g(x) is a T-CM of F . Note that| T | = g2-p-1 < q2-1 =

IFq-{-l} I=1S1

As noted above, [f(x)],Pk may not be a T-CM of Fq with | TI=1S[. But [f(x)]pk
can be a "modified" T-CM of Fq. We have

Theorem 2.4.8. Let q = p™ and ¢#S cF,. A polynomial f(x) & Pq[x] is an S-CM

of F if and only if for 0 < k <n, [{()JP* +aP* xP* is a PP of F forall a e S.




46

Proof. Let g(x) = ka. Then f(x) is an S-CM of F{l if and only if f(x)+ax is a PP
of Fq forall ae S. Since g(x) is a PP of F, the last statement is equivalent to that for all

a €S gf(x)+ax) = (E(xyHax)P = [fx)IP* +aP* xP* is a PP of F,

In this theorem, if we let S consist of all conjugates of elements in S over the

k.
prime field and let h(x) = [f(x)]l-"k, then we have that h(x)+axP  is a PP of Fq forallaeS.
Furthermore, if g(x)=xpk, then h(x) + ag(x) is a PP of Fq for all a € S. From Theorem
2.4.8, h(g-1(x)) is an S-CM of F,. In general, this is the case as shown by the following

theorem.

Theorem 2.4.9. Let f(x), g(x) € Fq[x] and let g(x) be a PP of Fq. Forae Fq,
f(x)+ag(x) is a PP of Fq if and only if f(g-1(x)) +ax is a PP of Fq. Moreover, let

¢¢S<:Fq. Then f(x)+ag(x) is a PP of Fq for all a € S if and only if f(g-1(x)) is an S-CM of

F_.
q
Proof. Write y = g(x). Then x = g-1(y). So f(x)+ag(x) is a PP of F; if and only
if f(g-1(y))+ag(g1(¥)) = f(g-1(y))+ay is a PP of 1%

The second assertion follows immediately from the first assertion.

%
Now, let's look at Theorem 2.4.7 again. Fix 0 <k<n. LetT = SP". As we

mentioned before, | T =1S |. By Theorem 2.4.7, we can construct a T-CM of Fq using
an S-CM of F. Also notice that such a constructed polynomial is unique. So there is a
one-to-one correspondence between the set of all S-CMs and the set of all T-CMs. The

following theorem tells us that there is a one-to-one correspondence between the set of all

S-CMs and the set of all T-CMs if there is a linear relation between S and T. Moreover,
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all polynomials we consider in the next theorem have degree < g-1 since any polynomial

and its reduction mod (x9-x) have the same images.

Theorem 2.4.10. Let S, T be two non-empty subsets of Fq. Let f}(S) and C(T)
be sets of all S-CMs and all T-CMs, respectively. If there is a function C(x)=ax+b €
Fy[x] with a € F’:l so that T = C(S) = {C(s) | s € S}, then there is a one-to-one
correspondence between C(S) and C(T) (so | C(S) | =1 C(T) I).

Proof. Define d: C(S)—C(T) by d(f(x)) = f(ax)-bx for all f(x) € C(S). Since T
= C(S), every element of T is of the form as+b, s € S. d(f(x)) + (as+b)x = f(ax) + s(ax)
= f(y) + sy, where y = ax. Since f(x) is an S-CM of Fq, d(f(x)) is an T-CM of Fq. Itis
easy to see that d is well-defined and one-to-one. d is also onto since for g(x) € C(T).
g(alx)+albx £ C(S) and d(g(a x)+a"lbx) = g(x). So d is a one-to-one correspondence

between (_:(S) and E(T).

Let S, T be two non-empty subsets of Fq, where q = p". Theorem 2.4.7 says that
T = SlJk for some 0 <k <n, then | C(S) | =1 C(T) | . Theorem 2.4.10 says that if there
is a linear relation between S and T, then | C(S) | = C(T)|. Butin general, | S1=1TI
does not imply | C(S) | =1 C(T) | . The following is an example.

Consider Fg = (0, 1, 2, B, B+1, B+2, 2B, 2B+1, 2f+2} where P satisfies
BZ=2B+1. LetS = {0,1,2} and T = {0,1,B}.

By Theorem 2.3.3, if f(x) € Fg[x] is an S-CM (or a T-CM), then the degree of the
reductin of f(x) mod (x%-x) is £9-1-3 = 5. So we just consider all polynomials of Fg[x]

which have degree < 5. Also note that each S-CM (and T-CM) of Fg is also a complete

mapping.
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According to Niederreiter-Robinson's complete mapping table (see p. 50), there

are exactly six kinds of complete mappings of Fo:

(1) ax+b, a,b € Fg, a#0, -1

(2)  -ax3+c, a,c € Fg, a nonsquare of Fg

(3)  ax3-x+c, a,c € Fg, a nonsquare of Fy

(4)  (b-a)"1x3 - b(b-a)lx+c,abce Fq, a#b nonsquares of Fy

(5)  a(x+b)S+c, a,bc e Fy, a2 =2

(6)  a(x+b)>tx+c, a,b,c € Fy, al=2

Since f(x) is an S-CM (T-CM) of F if and only if f(x)-f(0) is an S-CM (T-CM)
of Fy, we consider all polynomials which have constant term 0.

For (1), it is easy to see that there are six such S-CMs and six such T-CMs.

For (2), (3) and (4), let f(x) = tx3. Then D(f) = (t(u-v)2 | uzv e Fg) =
(t(2B+1), 2t, t(B+2), t}. For t a nonsquare, D(f) consists of all nonsquares. For (2),
there are 4 a's so that -ax3 is an S-CM but there is no such T-CM. For (3), there are 4
a's so that ax3-x is an S-CM and a T-CM (since B+2 is a square). For (4), if b-a is
square, then D(f) consists of all squares in F; In this case, (b-a)-1x3-b(b-a)-1x is an
S-CM if (a,b) = (2B+2,B), (B.2B+2), (B+1,2B), 2B,p+1) and is a T-CM if (a,b) =
(B+1,B), (B,2B+2), 2B+2,2B), (2B,p+1). If b-a is nonsquare, then D(f) consists of all
nonsquares in F;. In this case, there are no such (a,b) so that (b-a)-1x3-b(b-a)-1x is an
S-CM, and there are only two pairs (a,b) = (2B,8) and (B,2p) so that (b-a)-1x3-b(b-a)1x
isa T-CM.

For (5) and (6), let f(x) = ax3 = ax®O*1)/2 with a? = 2. From the proof of Lemma
2.4.3, we have D(f) = {a, -a, aB, - aP, a(2B+2), -a(2p+2)}. In fact, D(f) = Fq -{0,1,-1}

for both a = 2B +1 and a = B+2. So all polynomials in the forms (5) and (6) are S-CMs

but not T-CMs.




49

Combining all of these results together, we have | C(S) | = 9 x (6+4+4+4+2 x9 x
3) = 648 and | C(T) | = 9 x (6+4+4+2) = 144. Sol C(S)1#1C(D 1.

8.4 Very Complete Mappings

In this section, we consider q odd. Let S = [0,1,-1]<:Fq. If a polynomial f(x) €
F [x] is an S-CM of F, we call it a very complete mapping (abbreviated VCM) of F.
From this, we see that every VCM of Fq is a complete mapping of Fq and consequently,
most results in this section are similar to those of Niederreiter-Robinson's work for
complete mappings of Fq (see [28]).

At first, we want to characterize VCMs which have degree < 6. Niederreiter and
Robinson already characterized all complete mappings which have degree < 6. Their
results are listed on the next page. In this table, complete mappings of degree 6 are

considered for fields of order relatively prime to 6.

Using this table, we can characterize all VCMs of Fq which have degree < 6,
except for polynomilals of degree 6 over Fq with (6,q) = 3. We discuss case by case the
entries in this table.

Since we consider odd g, the case q = 0 mod 2 cannot happen.

Theorem 2.2.1 says that f(x) is a VCM of Fq if and only if f(x+b) is a VCM of Fq
forallbeF. Hence, from the table, we just need to consider polynomials of the form
axk+bx (or ax3+bx3+cx in the case q = 13). Now f(x) isa VCM of F if and only if both
f(x) and f(x)-x are complete mappings of Fq. From this, it is easy to see that the cases
q=7, 13 and 11 cannot happen.

For the linear polynomials, it is easy to see that ax isa VCM of F if and only if

a#0,+1. Note that we consider q > 3 in this section because of Corollary 2.3.4.




Table 1. List of complete mapping polynomials of degree < 6.
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Complete Mapping Polynomials q

ax+b, a,b € F , a#0, -1 allg
-ax3+c, ax3-x+c, (b-a)-1x3-b(b-a)-1x+c, a,b,c € F, ab q=0mod 3
nonsquares in F

-(x+a)*+3x+b, (x+a)4+3x+b, a,b e F; 7
a-1(x4+bx2+cx)+d, a,b,c,d € Fg, a#0 such that x4+bx2+cx and q=0mod2
x4+bx2+(a+c)x each have x= 0 as the unique root in Fq
5a-2[(x+b)S+a(x+b)3+8a2x] + c, 8a-2[(x+b)S+a(x+b)3+3a2x] +¢c [ 13

a,b,c € Fy3, a not a square in Fy4

a(x+b)3 + ¢, a(x+b)5 £ x + ¢, b,c € Fy arbitrary, a2 =2 9

-ax3+c, ax3-x+c, (a-b)-1x3-a(a-b)!x + ¢, a,b,c € F, q=0mod 5
a#b not fourth powers in F

-5(x+b)0+x+c, -2(x~li-b)5—4x+c, 2(x+b)b-dx+c, 5(x+b)0+x+c

-3(x+b)0+5x+c, 3(x+b)6+5x+c, S(x+b)6-2x+c, -2(x+b)0+3x+c 1

2(x+b)6+3x+c, -5(x+b)0-2x+c, 4(x+b)0+5x+c, -4(x+b)6+5x+c

b,c € Fy, arbitrary
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For degree 3, we consider the polynomial f(x) = tx3. By similar arguments in the
last example of the last section, we have -D(f) = {-tr2 It e F:}. Let a,b € F’; be
nonsquares with a#b. Let f;(x) = -ax3, f,(x) = ax3 and f3(x) = (b-a)-1x3. From Table 1,
we just need to check that -1¢ -D(f;), 1¢ -D(f,) and -b(b-a)l-1e -D(f3). -1e- D(fy) if
and only if thereisr € F: so that -1 = ar2. The last equality is equivalent to -a being a
square in F: This is true only when q = 3 mod 4. Similarly, 1 € -D(f,) if and only if
q= 3 mod 4. Combining together, we have that ax3, ax3+x, a nonsquare in F;, are
VCMs of Fq when q = 1 mod 4. Now -b(b-a)1-1 € -D(f3) if and only if there is r EP; S0~
that -b(b-a)-1-1 = -(b-a)-1r2. In this case, 2b-a is a square in F: . So (b-a)-1x3-b(b-a)1x
isa VCM of Fy if and only if a#b, 2b-a are nonsquares in F:

From Table 1, it is easy to see that ax5 and ax5+x, with a2 = 2, are VCMs of F,.

By an argument similar to that in the case degree 3, we have that -ax’ isa VCM of
F, if and only if a and 2a'! are not fourth powers, ax3-x is a VCM of F, if and only if a
and 2a-1 are not fourth powers, and (a-b)-1x3-a(a-b)-1x is a VCM of F, if and only if azb,
2a-b are not fourth powers, where q = 0 mod 5. Notice that -ax5, -ax3-x, ax3-x and

ax3-2x can be written in the third form if they are VCMs of Fq. We summarize our

results in Table 2.
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Table 2. List of very complete mapping polynomials of degree < 6.

Very Complete Mapping Polynomials q

ax+b, a,b € F, a#0, *1 all odd g

ax3+c, ax3ix+c, a,c € Fy, a nonsquare in Fy q=0mod 3
and
q=1mod 4

(b-a)-1x3-b(b-a)-1x+c, a,b,c € Eq a#b q=0mod 3

a,b,2b-a nonsquares in F,

a(x+b)S+c, a(x+b)Stx+c, bc e F arbitrary, a2 =2 9

(a-b)-1x5-a(a-b)-1x+c, a,b,c € B a#b, and a,b,2a-b q=0mod 5

not fourth powers in F’;

In Theorem 2.2.3, we estimated the total number of S-CMs in the form
ax(@124bx. Now we consider the special case a = 1. We have the following theorem.

The proof is similar to that of Niederreiter and Robinson (see pp. 205-206, [28]).

Theorem 2.5.1. The number N of elements b € Fq such that x(@+*1/2 4+ bx is a
_9q1/2.
VCM of F; satisfies N 2 QHTM- when q # 0 mod 3. If Fg is of characteristic 3, we

have

if =1 (mod 4)

if =3 (mod 4)

q-9
4

q-3
4
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Proof. For b € Fy, x(@+1)/2 4 bx is a VCM of F if and only if n(b2-1) =
N((b-1)2-1) = N((b+1)2-1) = 1, where 7 is the quadratic character of F: (by Lemma
2.2.1). Note that b2-1 = 0 if and only if b = %1, (b-1)2-1 =0 if and only if b = Oor?2,
and (b+1)2-1 =0 is equivalent to b=0or -2. So

N=L ) [ 1an @) LoD D][ Ln(@+D-1)

b#0,£1,+2

1
8

co |

( 2 L+ 2 n(b(b+2)) + z N(b(b-2)) + z N((b-1)(b+1))

b#0,£1,£2 bz0,£1,£2 b#0,£1,£2 b=0,+1,+2

& Y ORI+ Y, NO+DO-DO-2) + S N2 b+1bo-1)

b#0,+1,+2 b#0,£1,+2 b#0,+1,£2

oy n(bz(b+2)(b+1)(b-l)(b-Z)))

b#0,+1,£2

If g = p™ with p > 3, then

N =L {g:5+ ) nb(b+2) + Y602 + 3, AG-DOHY) + N((b+2)(b-2b")
beF beF,

bEFq beFg

+) M(+)b(b-1)(b-2)) D N(O+2)(b+Db(b-1) + N((b+2)(b+1)(b-1)(b-2)b")
beFg beFg beFq

-N3)NEDNE)-NE-DMEG)NE)-MED-NBG)NEG)-NG)NE3)n24 )24 ) }
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From Corollary 1.4.7, we have

T (o) =-1=, 1b-2) and Y n(G-DO+1) =-1.
beF,

beF, beFg

Y (2 0-26Y) = D nbOMb+2)(6-2) = -n(@-1 =2
beF

q beFq

From Theorem 2¢' in [38],

l 2 n((b+1)b(b-1)(b-2))l <3¢ and | 2 N((b+2)(b+1)b(b-1)) | 2ad?

beFy beFy
And
lz N(+2)b+1)b-1b-26D =l @) £y n((b+2)(b+1)(b—1)(b-2))l
beFy beF,
<1+ |2 n((b+2)(b+1)(b—1)(b—2))| <1+3q"2.
ban
So
N% {g-5-1-1-1-2-4n(3)-20(-3)-3nCD-2n @206+ Y M(B+)b(b-1)(b-2))

beFq

+ 3 (o) B+DbO-D) + Y N((+2)(b+1)(b-1)(b-2)b") }
beF,

bqu

1
2¢ {q-23- 3q/% -3¢" 1 -3q”2}
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Let p=3. Then

N=L{ T 1+ -0+ Ym0+ > n(G- Do+ Y 1 B+D(-1)

8 b#0,£1 b#0,x1 b#0,+1 b=0,+1 b#0,%1

+ 3 (1) + Y N+ DbG-D) +, 'O+ (0-1)) }

bz0,t1 b#0,£1 bz0,+1

=L {g3+Y nGE-1)+Y, NGO +Y, MG-DEH) +D, b G+G-D)

beF, beF, beF, beFg

£ n(b+1)7b(6-1)) + Y. n(+DBG-DY) +q 31D N¢-D N1

beFg beFg

=_é_ {29-6-1-1-1-1-n¢-1) -1 -n(-1) -1 -n(-1) -3n(-D)}
% if q=1(mod 4)
_ a63mCh
4 | % if q=3 (mod 4)

Here, we used the fact that -1 is a square in Fq if and only if q = 1 mod 4. This completes

the proof.

When we consider q =0 mod 3 in this theorem, the formula for N is the same as
Niederreiter-Robinson’s formula for the number of complete mappings of F. This

implies that every complete mapping of E, in the form x(@D/2 4 bx is also a VCM of Fy

From Theorem 2.5.1, we have immediately the following
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Corollary 2.5.2. If q =27, 81 or q 2 125, there is a VCM of Fq in the form
(A2 + bx, be F .

0ql72.
Proof. Assume first q # 0 mod 3. From Theorem 2.5.1, N 2 Qiqs—zd' .

If q-9q1/2-24 > 0, there is a VCM in this form. Now, q-9q!/2-24 > 0 if and only if

(g% %)2 > % . Since q > 0, the last inequality is equivalent to ql2 >9+2— LLLE

So q-991/2-24 > 0if and only if q > 125.

For q =0 mod 3, there is a VCM of F, (and Fg,) in this form.

From computer calculations, there is a VCM of F in the form x@*172 4+ bx with b
EF: forq = 19,23, 25, 31,-.41, 43, 47, 49, 53, 59, 61,67, 11, 713, 79,83,:89, 97, 101,
103, 107, 109, 113, and 121. From this data it is clear that the lower bound from
Theorem 2.5.1 is not best possible.

Now, we are going to search for finite fields Fq which have VCMs of degree > 1.

We give the following

Theorem 2.5.3. There is a VCM f(x) of Fq so that the reduction f(x) mod (x9-x)
has degree > 1 if and only if =9 orq 2 13.
Proof. From Theorem 2.2.3, the number N of VCMs of Fq in the form
3
ax(@ D72 4 bx with a#0 satisfies N > (9—311295@ = @D | 1f > 13, this number N is
greater than 0.

From Theorem 2.2.9, there is a VCM of Fy in the form ax3+bx with a=0.

From Corollary 2.3.4, q > 3. So the only remaining cases are q =95, 7 and 11.
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By Theorem 2.3.3, the reduction mod (x5-x) of any VCM of F5 must be a linear
polynomial.

Letq=7. If f(x) is a VCM of F; with deg f <6, then deg f <3 by Theorem
2.3.3. From Table 2, f must be a linear polynomial.

Finally, let q = 11. By similar argument as in the case q = 7, the only remaining

polynomials we have to exclude are polynomials of degree 7. But as mentioned in [2],

the only VCMs of Fy, are linear polynomials. This completes the proof.

Finally, we give one more method (in addition to methods in Theorem 2.2.1) to

construct a new VCM of F, when we already have a VCM of Fy- It is the following

theorem. We will use it in Section 3 of Chapter III.

Theorem 2.5.4. Let f(x) e F [x] be a VCM. Then the polynomial g(x) =
-2f(x)+x is also a VCM of Fq where f(x) is a polynomial representing the inverse of
f(x)+x.

Proof. Write y = f(x)+x. Then g(y) = -26(y)+y = -2x+x+i(x) = f(x)-x, g(y)+y =

-2f(y)+2y = -2x+2(x+f(x)) = 2f(x) and g(y)-y = -2f(y) = -2x. Since f(x) is a VCM of

Fq, f(x)+x is a PP of Fq. So y ranges over all elements of I-T‘:l if and only if x ranges over

all elements of Fq and so f(x)-x, 2f(x), -2x range over all elements of Fq. Hence g(y) isa

YCM of Fq.
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CHAPTER 3

GENERALIZED PANDIAGONAL LATIN
SQUARES OF ORDER q

1 Introduction

A Latin square of order n is an nxn array with the property that each row and each
column is a permutation of the numbers 0,1,...,n-1. By a pandiagonal Latin square
(abbreviated PLS) is meant a Latin square satisfying the additional condition that each of
the 2n wrap-around left and right diagonals is also a permutation of 0,1,...,n-1 (see[1]).
PLSs are of importance in the construction of magic squares (see, for example, [39]) and
they are also useful in the design of statistical experiments (see, for example, [20]).

It is well-known that there is a pandiagonal Latin square of order n if and only if n
is not divisible by 2 or 3 (see [19]). Moreover, if n = p?l...p:’, Py»---»P, distinct primes,
and if there is a pandiagonal Latin square of order p?i for each i, then using the
Kronecker product of matrices (see [16]), one can construct such a square of order n.
We generalize the idea of pandiagonal Latin squares to squares over finite fields, and will
call them generalized pandiagonal Latin squares.

When we consider an nxn array, we use (1,j) to denote the position at the
intersection of the ith row and the jth column. So the set {(i,j)| 1 <i<n,1<j<n}is

the set of all positions. When we define generalized pandiagonal Latin squares, we

consider, in fact, the set F quq as the set of all positions. Then we define rows, columns
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and right and left diagonals based on the additive group of F rather than on the additiv.c
structure of Z/(n). If Z/(n) is the quotient ring of integers Z modulo the principle ideal
(n), Rosser and Walker (see [36]) found the group structure of the set of all permutations
of Z/(n) x Z/(n), which preserve the set of all rows, columns and diagonals. Atkin, Hay
and Larson (see [1]) also determined the same group structure independently. In Section
2, we will study the group structure of all permutations on quF q which preserve the set
of all rows, columns and diagonals.

A path on an nxn array is defined to be the set of positions in which all entries are
a fixed number. When we study a pandiagonal Latin square of order n, each path
corresponds to a so-called virtual path which is defined to be a function f: Z/(n)—Z/(n)
so that f(x), f(x)+x and f(x)-x are permutations on Z/(n) (see [1] and [19]). Virtual paths
are useful in the construction and study of pandiagonal Latin squares. Every virtual path
of Z/(p), p a prime, is actually a very complete mapping of the field Z/(p). In Section 3,

we will study generalized pandiagonal Latin squares by means of VCMs of F .

Finally, in this chapter, q is always a power of an odd prime p.

2. Group Structure of PLS-Transformations on Fq ><Fq

In this section, we consider transformations on quFq which generalize

transformations on Z/(p) x Z/(p) which have been used to study pandiagonal Latin

squares (see [1] and [36]). The methods we use in this section are similar to those used

in [1].

Definition. Let Fq be a finite field of characteristic an odd prime p. Forag Fq,

the set {(a,x) | x € Fq} is called the a-row, {(x,a) I x € Fq] the a-column, {(x, a+x) | x €
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Fq} the right a-diagonal, and {(x,a-x) I x € Fq] the left a-diagonal. We always use T for

the set of all rows, columns and diagonals.

We note that if q = p a prime, the additive group of Fp is cyclic but if q = p? with
n 2 2, the additive group of Fq is not cyclic and so there is a difference between our

definition and the usual one from a cyclic group. The following are examples.

Table 3. The right 1-diagonal on Fg x Fy.
Fo = {0, 1,2, B, B+1, B+2, 2B, 2B+1, 2B+2} with B% = 2B+1

0 1 2 B B+1 B+2 2B 2B+1 | 2B+2

B+1

B+2 \

2B
2B+1

282

The slanted line segments indicate the right 1-diagonal on Fgx Fy,.
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Table 4. The right 1-diagonal on Z/(9) x Z/(9).

0 1 ’ 3 4 5 6 7 8
0

1

2

3

4

5 \

6

8

The slanted line segments indicate the right 1-diagonal in the usual case of the cyclic

group of integers madulo 9.

From the definition, it is easy to see that the intersection of any two different
kinds of elements in T consists of exactl'y one ordered pair. For example,
{(@,x) | x EFq} N{(xb)Ixe Fq] = {(a,b)}, {(x,a+x) I x & Fq] N {(x,bx)Ixe Fq} =

{2 1(b-a), 2-1(b+a))}, and so on.

Definition. A mapping 0Fx Fq—>Fq>< F, is called a PLS-transformation if o is

one-to-one and if o maps the set T into itself.
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Since qu Fq is a finite set, o is one-to-one if and only if o is onto. So o is a

one-to-one correspondence. This imples that {at(A) | A € T} = T whenever a(A) € T for

allAeT.

Now, let G be the set of all PLS-transformations on qu Fq. It is easy to see that

G is a group under functional composition. In G, the following PLS-transformations are
important. For the remainder of the chapter we use the following notations to represent
these important functions.

(1) For (a,b) € qu Fq, T(a.b)’ (x,y)—(x+a, y+b)

2 v xy)-=(x.y)

(3 o (xy)>(x+y, -x+y)

(4) Let q =p™. For any n-tuple (@, ap»--,2,_1) Of elements in Fq such that
n-1 A
Ebaixp isa PP of Fq, define u(ao _____ a1 Fx Fq—>qu E, by Kay,...a, 1)’
n-1 i n-1 :
(X,Y)‘—) (_zaixp ] Ealyp )
i=0 i=0

(5)  Ifq=3", we define y: FxF —F x Fy by y: (x,y)—(x,x-y).

It is easy to see that all such mappings are PLS-transformations. Moreover, we
have | T(a.b) | = the order of Tapb) =P for all (a,b) € qu Fq with (a,b)#(0,0), | v | =2 and
ly1=2(@fp=3). Now 62(x,y) = (2y,-2x), 63(x,y) = (-2x+2y,-2x-2y) and G4(x,y) =

n-1 .
(-4x,-4y). Sol o |=4-order of -4 in F; Finally, let f(x) = Ya,xP' be a PP of Ej. Let
i=0

Ap= (a{_j) taking i-j mod n. LetH = (nqi+j) where 1, NP,...MP"! form a normal basis of

Fq over Fp. Then A; = HAfH'l € GL(n,Fp). We can see that f(x)—A; is an isomorphism
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i
of the Betti-Mathieu group BM onto GL(n,Fp). Moreover, u(ao'___,an_l) (x,y) =

(fi(x).fi(y)) so | 1= the order of A¢ in GL(n,F).

It is not difficult to check that I)’I:(a,b) = T(a’-b)u, G't(a'b) = T(a +b,-a +b)0- = Tc(a'b)c,

Heonman.) @ = F)fa.a"‘nil at) a1 Haomin 1) ¥ = PHeaoay 1

i=0 i=

Kague 1 = Magnty 1 Yiab) = Waat)V = Ty(ab)V> 304 Whaag, .2 1) =
u(ao""la[l_l)w"
It is perhaps easier to see the effects of these PLS-transformations in the set T of

rows, columns and diagonals. We list as follows.

Table 5.  Effects of PLS-transformations in the set of rdws, columns and diagonals.
TOWS columns right left
diggonals diagonals

| Tab) rows columns right diagonals | left diagonals
L TOWS columns left diagonals | right diagonals
c right diagonals | left diagonals | columns TOWS
Ll(30,---&1,1.1) TOWS columns right diagonals | left diagonals
y(ifp=3) TOWS right diagonals | columns left diagonals

In the table the result of applying the function in a given row to the element of T

labelled by a given column, lies at the intersection of that row-and column. For example,

G maps columns onto left diagonals and left diagonals to rows.
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xFq} and H = {00 € G 1 a(0,0) = (0,0)}.

Now, let K = (T3 | @) EFq
1) iqu has

Moreover, let R be the subgroup of G generated either by U, © and Py a

characteristic p > 3 or by ¥, v, 6 and g a 1) if p = 3. Consider & € G and let

a.(0,0) = (ay,by)- Then (1(_30‘_1)0)(1) (0,0) = (0,0) and so h = T(—ao.-bo)a ¢ H. Note that

1

1(_30,_1.)0) = 1(8.0,1)0), ea= T(aOst)h so that G=

the inverse mapping of T(y by We hav

KH. Itis easy to see that HNK = (1}, where I is the identy mapping on qu Fq. Hence,

every element of G can be uniquely expressed as & = T(a,b)h‘ We have proven

Lemma 3.2.1. G = KH and KnH = {I}.

Now we study the subgroup H of G. For this purpose, we need the following

lemma which shows that additive functions must be linearized polynomials.

Lemma 3.2.2. Letq=p". Letf(x) e Fq[x] be of degree <q. If f(a+b) = f(a)+f(b)
for all a,b € F, then f(x) is a linearized polynomial of Fy over Ep-

Proof. Fora fixed b € Fq, we have f(x+b) = f(x)+f(b) and so f '(x+b) = f '(x).
This is true forallb € Fq. We have f '(a+x) = f '(a) a constant since deg f' < q. So f'(x)
e F j[x] is a constant. Hence, f(x) is of the form f(x) = a0+alx+a2xp"2+...+akxpnk where
n,<...<n and pn < q. Since £(0) = £(0+0) = £(0) + £(0), we have £(0) = 0 and so
a,=0.

Let g(x) = f(x)-a;x = azxpn?'+...+akxpnk. Then g(a+b) = g(a)+g(b) forallab &

Fq. Since p is the characteristic of Fq, there are by,...,.bx € Fq so that a; = b‘i’, 2<i<k

Let h(x) = byx 2+...+b,x K. Then g(x) = [h(x)]P. ForabeFg, [h(a+b)]? = g(a+b) =
g(a)+gd) = [h(@)]P+[h(b))? = [h(a)+h(b)]P. So for ab € F, h(a+b) = h(a)+h(b).

e e et i

i
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Moreover, deg h = n, < deg f <q. Thus, by induction on the degree, h(x) is a linearized
o | .
polynomial of Fq over Fp. So n; = pm‘ for 2 < i < k. Hence, f(x) =

e oo .
a1x+a2xpm2+...+akxp k 5 a linearized polynomial.

We are now ready to study the subgroup H.

Lemma 3.2.3. H =R, where R is generated by v, ¢ and Hagagmp.1) (and
vy if p = 3).

Proof. Clearly, RcH. We now prove HCR. For this purpose, let o € H. Let
A.B £ T, A#B, be of the same type, i.e., A and B are two rows, two columns, two right
diagonals, or two left diagonals. We claim that o(A) and o(B) are of the same type.

Suppose not. Then 6(A)Nc(B)#¢ as we mentioned before. This contradicts ¢ being

one-to-one on FxF, since ANB = ¢. We get our assertion.

ForaeF, letR, be the a-row. By Table 5, we can multiply a suitable Gi" with
0<iy<3sothata, = cri"u maps rows onto rows. Since & (0,0) = (0,0), we have
a,(R,) =R,. Since o, maps the set of all rows onto itself, oty (x,y) = (£(x), g,(¥))
where f(x) and g,(y) (x € Fq) are PPs of Fq and £(0) = 0 and g,(0) = 0. There are three
cases:

Case 1. o, maps columns onto columns.

Multiplying suitable v with j = 0,1, the function oy = Djoco maps rows onto
rows, columns onto columns, right diagonals onto right diagonals. Also dl(0,0) =(0,0)
and o;(R,) =R,. By similar agruments as above, there are PPs f(x) and g,(y) of Fq SO
that o, (x,y) = (f;(x),g,(y)). Note that g(y) is independent of x since &y maps columns

onto columns. Also f;(0) =0 = g,(0). Since &t; maps right diagonals onto right

diagonals, we have that fora e Fq, there exists a unique h(a) such that (f;(x),h(a)+f,(x))




66

= oy (x,a+x) = (f;(x),g,(x+a)). So g (x+a) = h(a)+f;(x). Choosing x = -a, we have 0 =
g,(0) =h(a)+f 1(-a) and so h(a) = -f(-a) forallae Fq. This implies h(0) =0. So g(x) =
g,(0+x) = h(0)+f;(x) = f,(x). Hence, o (x,y) = (fl(x),fl(y)). Furthermore, for a € Fq,
there is a unique /(a) € Fq such that (f;(x), I(a)-f(x)) = o (x,a-x), since Ct; maps left
diagonals onto left diagonals. So f,(a-x) = I(a)-f,(x). Choosing x = a, we have [(a) =
fi(a)forallae Fq. This implies f;(a+b) =f 1(@)+f;(b) for all a,be Fq. By Lemma 3.2.2,
f,(x) = E:;aixpi is a linearized polynomial. So o = l'l(ao,---:an-ﬂ' Hence,
a=cpg o jER.

Case 2. p =3 and ¢, maps columns to diagonals.

In this case, we multiply o, either by y if o, maps columns onto right diagonals
or by W if &ty maps columns onto left diagonals. Then we have a PLS-transformation
ot; which maps rows onto rows and columns onto columns. From Case 1, o, eR and
so 0, eRandsoaeR. -

Case 3. p >3 and o maps columns onto diagonals. We will show that this case
cannot happen.

Without Ios; of generality, we assume o, maps columns onto right diagonals
(since we can replace o, by va if o, maps columns onto left diagonals). For each
ae Fq, there is a unique g(a) € Fq so that o (x,a) = (f(x),g(a)+f(x)). Since o, maps rows
onto rows, g(x) is a PP of Fq. So ay(x,y) = (f(x),f(x)+g(y)). Also, g(0) = 0. Now,
there are two subcases.

(1) o, maps right diagonals onto colurﬁns. So, for each b € Fq, there is a
unique h(b) & Fy such that (f(x),h(b)) = oL, (x,b+x) = (f(x),f(x)+g(b+x)). So h(b) =
g(b+x)+f(x). Taking x = -b, h(b) = f(-b) since g(0) = 0. This is true for all b € Fq. So

g(b+x) = f(-b)-f(x) for all x,b & Fy. Taking b =0, we have g(x) = -f(x). So oy (x,y) =
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(f(x),£(x)-f(y)). From g(b+x) = f(-b)-f(x) and g(x) = -f(x), we have f(x+b) = f(x)-f(-b)
for all x,b & Fq. For fixed b e Fq, 0L, (x,b-x) = (f(x),f(x)-f(b-x)) = (f(x),f(x)-f(b+(-x))) =
(£(x),£(x)-f(b)+(x)) = (f(x),(3f(x)-f(b))-f(x)) for all x & Fq. Since o, maps left diagonals
onto left diagonals, we have that for fixed b € Fq, 3f(x)-f(b) is constant for all x € Fq. So
3f(x) is constant. That is impossible since f(x) is a PP of Fq and 3 ¢ 1-": forp > 3. So
such o, does not exist.

(2) O, maps right diagonals onto left diagonals. Then o, maps left diagonals
onto columns. For each a & Fq, there is a unique /(a) € Fq so that (f(x),/(a)-f(x)) =
oo (x,a+x) = (f(x),f(x)+g(a+x)). So I(a) = g(a+x)+2f(x). Taking x = -a, I(a) = 2f(-a).
So g(a+x) = 2f(-a)-2f(x) forall a,x € Fq. Since o, maps left diagonals onto columns, we
have that for a € Fq, there is a unique k(a) € Fq so that (f(x),k(a)) = 0y (x,a-x) =
(f(x),f(x)+g(a-x)). So k(a) = f(x)+g(a-x) for all a,x € Fq. This implies k(a) = f(a) for all
age Fq. So for all a,x £ Fq, f(a)-f(x) = g(a-x) = g((-x)+a) = 2f(x)-2f(a). Hence 3(f(x)-
f(a))=0forallax e Fq. This is impossible since f(x) is a PP of Fq and 3 ¢ F: So there
is no such o

Combining all results above, we have o ¢ H implies o € R. Hence, HCR and

soH=R This completes the proof.

Now, we are in a position to prove our main results.
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Theorem 3.2.4. G is a semidirect product of K by H. Moreover,

8(p™1) (p™p)...(p"-p" Hp**  ifq=p" withp>3
IGl=
24(p™1) (p™p)...p"p"Hp*" ifq=p" withp=3.

Proof. By Lemma 3.2.1, G = KH and KNnH = (I}. From the definition of
semidirect product, we have to check that K is normal in G. By Lemma 3.2.3, H is

generated by v, ¢ and Kagn.ay.p) (and v if p = 3). So we just need to check that
peeey n_

1

V(501 0T 507y Keag,...a, ) Tab) ool YT py e K. We have already

T
seen that indeed this is the case, so G is a semidirect product of K by H.
Since G is a semidirect product of K by H, we have |G | =I KIIHI= |H|q2.
Now, let B be the subgroup of G generated by all Kaguoy. 1)’ where

n-1
f(x) = anixpl is a PP of F so that from the definition of Ky a1y it is easy to see that

B is isomorphic to Betti-Mathieu group. So B is isomorphic to GL(n,Fp). Hence,
IBl=I| GL(n,Fp) = (p"—1)(p“-p)...(p“-p“'1). Moreover, we already saw that
u(aO:"-»an-])D = uu(aOr--'an-l), u(aO‘"-van_l)G = Gu(aO!---nan-l) and wu(ao,--w&n_l) =
Kao,...aq PV if p=3. So Bis normal in H. There are two cases:

Case 1. p> 3. In this case, H/B is generated by vB and oB. It is easy to check
that | VB 1=2,1 6B | =4 and (UB)-(oB)-(LB) = (6B)-! in H/B. From Theorem 1.1.3
(1), H/B is isomorphic to D, the dihedral group of order 8. So | H/B | = 8. Hence,
|HI=81B1 =8(p"1)...(p"p™"). Since |IGI=1KIIHI wehave |Gl =
8" 1)...p"p" Hp™".

Case 2. p =3. In this case, H/B is generated by vB, 0B and yB. It is easy

to check that oyo3yoyo3 =v. So H/B is generated by oB and yB. Now, (yB)? =
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((yB)(oB)™1)3 = (6B)* = B, the identity in H/B. From Theorem 1.1.3 (2), H/B is
isomorphic to S, the symmetric group of degree 4. So | H/B | = 24. This implies
|H|=241B =24 (p"1)...p"-p" ). Hence,

|Gl =1KIIHI=24 @"1)..(p"p" )p*" and this completes the proof.

From Theorem 3.2.4, every element o € G can be expressed as & = T¢, 1,0y for

some T, 1, € K and & € H. Since H is generated by Hagtg.p O O (and y if p = 3),
and every element of B commutes with the v and 6 (and y if p = 3), there is u(ao'___ a7

e B sothat =141, u(ao'_._‘an_l)aQ for some 0., a product of v, ¢ (and Yy if p = 3).

(1) p>3. In Case 1 of the proof of Theorem 3.2.4, we have VOV =

O3 gy b TOT SOmE By 1€ B. We can write o = vlol with i =0,1 and j =
0,1,2,3 when we choose u(ao""'an-l) suitably. So G = [T(a,b)u(ao....,an_l)ulcj la,be Fq,
n-1 :
f(x) = ya;xP'is a PP of Fy,i=0,1andj=0,1,23).
=0

(2) p =3. From Case 2 in the proof of Theorem 3.2.4, we can write o, as

Yl olly'r ol where 1> 1,4, = 0,1, 4y = =i, = 1, j, = 0,1,2,3 an?jﬁ 123 for 1 <!
. Iy

Zafxpt is a PP of Fq,

=0

r21,ij=0,1,iy=.=i,=1,j;=0,1,23 and j,=1,2,3 for 1 < I <r}.

<r. 80G =ty Ui a0y WO/l OF labeFy, f(x) =
) pressfipy

Finally, we have the following

Theorem 3.2.5. The group G is solvable if and only if either q = p is a prime
orq=9.

Proof. From Theorem 3.2.4, G is a semidirect product of H by K. So G/H is

isomorphic to K. From Theorem 1.1.1, G is solvable if and only if both K and H are
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solvable. From the same theorem, H is solvable if and only if both B and H/B are
solvable.
Now, from the definition of K, it is easy to see that K is isomorphic to the

elementary p-group Z/(p)x...x Z/(p) with 2n copies of Z/(p) if ¢ = p". So K is solvable.
We already see that B is isomorphic to GL(n,Fp) if ¢ =p". From Theorem 1.3.5,

GL(n,Fp) is.solvable if and only if eithern=1orn=2 and p =2, 3. So B is solvable if
and only if either Fq =FgorF o Fp.

If p > 3, H/B is isomorphic to D, (from Case 1 in the proof of Theorem 3.2.4)
and so is solvable. In this case, H is solvable if and only if q = p is a prime. If p =3,
H/B is isomorphic to S, (from Case 2 in the proof of Theorem 3.2.4) and so is solvable.
In this case, H is solvable if and only if either Fo= Fgor F,;1 =Fj.

Combining all results above together, we see that G is solvable if and only if

either q = p is a prime or ¢ =9. This completes the proof.

3 Generalized Pandiagonal Latin Squares Over Fq

In this section, we will study so-called generalized pandiagonal Latin squares
over finite fields. They are a generalization of pandiagonal Latin squares of order p, a
prime number. We study some properties of generalized pandiagonal Latin squares. We
then give two methods to construct such squares and then compare these two methods.

All notations we used in the previous section are still kept fixed in this section.

Definition. A generalized pandiagonal Latin square (abbreviated GPLS) of order

q is a function A: qu Fq—»Fq such that A(A) = Fq forall AeT.

— s e T gk e e . I S Sl st T e
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We note that if q is a prime, this definition reduces to that of the usual definition i

of a pandiagonal Latin square defined in Section 1. We give an example in the following

We note that each of the rows, columns, left and right diagonals as defined in the

previous section is a permutation of F,.

table. ’jl
Table 6.  Selected GPLS of order 9.
Fg = (0, 1,2, B, B+1, B+2, 2B, 2B+1, 2p+2} with B2 =2B+1. ;J
0 1 |2 B B+l B2 [2B  [2B+1 |2B+2 "

0 0 B B |2 28+1 |B+1 |1 2B+2 | B+2 ]
1 2 B+2 |2B+2 |1 2B B 0 2B+1 | B+1 i
2 1 B+1  |2B+1 |0 2p+2 |B+2 |2 B B ?51
B 2B 0 B 28+2 |B+1 |1 2B+1 |B+2 |2 ,\
B+l [[2B+2 |2 B+2 |2p+1 |B 0 2B B+l |1 1'
B+2 |[2B+1 |1 B+1 [2B B+2 |2 28+2 (B 0 I
2P B 2B 0 B+2 |1 2B+1 | B+1 2 2B+2 i
2B+1 [|B+2  |2B+2 |2 B+1 |0 28 B 1 2B+1 ]
% |22 |[B+1  |2B+1 |1 B 2 2B+2 |B+2 |0 2B !
!

|

Let A be a GPLS of order q. From the definition, it is easy to see that Aot is a
GPLS of order q for all PLS-transformations o € G. Moreover, if f(x) € Fy[x] is a PP of i

Fq. then foA is a GPLS of order q. Now, letc € Fq and consider the inverse image '

A1(e) = ((ab) e FxFy | Aab) =c]. We have the following !
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Theorem 3.3.1. Foreachce Fq, there is a polynomial f.(x) e Fq[x] so that
Ale) = {@af (@) lae F,}. Moreover, for each c £ F, the polynomial £ (x) is a VCM
of Fq.

Proof. Fixce Fq. Foreachace Fq, R,={(ab)lbe Fq] is the a-row. By the
definition of a GPLS, ARy = Fq. So there is a unique f.(a)e Fq so that
(a,f(a)) e R;NA™I(c). Hence, f(x) is a function on Fg and so f (x) e F[x].

Suppose a,b € Fq with f (a) = f,(b) =d. Then (a,d) and (b,d) are in the column
Ci={led)lee Fq] and A(a,d) = c = A(b,d). Since A(Cy) = Fq, (a,d) = (b,d) and so
a=b. This implies f.(x) one-to-one. So f.(x)isaPPof F ¢

Foreachbe Fq, letDy = {(a,b+a)lae Fq} be the right b-diagonal. Since ADy =
Fg there is a unique x;, & Fy so that (x,b+x,) € A"I(c). So (xy,b+x,) = (Xpofe(xp))-
Hence, b+x, = f.(xp) and thus, b= f.(xp)-x;,. Since b ranges over all F_, the polynomial
f.(x)-x maps Fq onto itself. So f.(x)-x is a PP of Fq.

By a similar agrument, f.(x)+x is also a PP of Fq.

Combining all results together, f(x) is a VCM of Fq.

Let A be a GPLS of order q. Foreachae Fy let R, (x) = A(a,x), C,(x) = A(x,a),
D,(x) = A(x,a+x) and L,(x) = A(x,a-x). So R, (x) is defined by the image of the a-row,
C,(x) by the image of the a-column, D, (x) by the image of the right a-diagonal and L,(x)
by the image of the left a-diagonal. Since A(A) = Fq forall A €T, all of Ra(x), Ca(x),
D,(x) and L,(x) are PPs of Fq. Foreachbe Fq, let fy(x) be the VCM of Fq defined as in

Theorem 3.3.1. Then we have the following relations.
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Theorem 3.3.2. Fora,b € F, fi(a) = R;l(b), fi)l(a) = C;l(b), (fb‘l)'l(a) = D;I(b),
and (fb+1)’1(a) =L;1(b), where (fy-1)(x) = fi,(x)-x and (f,+1)(x) = f(x)+x.

Proof. Leta,b e F.

b = Aa.fy () = R, (£,(@)) and 5o fy(a) = R (b).

b= A} (a),2) = C,(f; (@) and 50 ) (@) = C; (B).

Write ¢ = (f,-1)"1(2). Then D((f,-1)"(@) = A((fy,- 1) (@), a+(fy- 1) @) =
Ale,(E-1)(©)+0) = AC,fy(©) =b. So D (b) = (fy-1) ().

Similarly, we have L;l (b)) = (fb+1)'1(a). This completes the proof.

From Theorem 3.3.1, if A is a GPLS of order g, there are ¢ VCMs of F, say
f,(x)forallae Fq, such that A(x,f,(x)) = a. Since AC) = Fq for all columns C, we have

that £, (x)#f,(x,) forall x € Fq whenever a,b € Fq with a#b.

Definition. Two polynomials f(x),g(x) € Fg[x] are compatible if f(a)#g(a) for all a

€ Fq. Polynomials f}(x),....f,,(x) € Fq[x] are compatible if they are compatible pairwise.

From this definition, if f;(x),....f,(X) € Fq[x] are compatible polynomials, then
forany ae F , 1{fi(a)| 1 €i<m}l=m. In particular, if m = q, {f;(a) l1<i<q}= 1-7q for
allae Fq.

The remark immediately before the definition says that if there is a GPLS of order

q, then we have a set of q compatible VCMs of F . The converse is also true. Itis

Theorem 3.3.3. If {f,(x) € Fq[x] lage Fq] is a set of q compatible VCMs of Fq,

the mapping A: quFq—>Fq defined by A(b,f (b)) =aforalla,be Fq is a GPLS of order q.
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Proof. Since {f,(x)|a¢e Fq} is a set of q compatible VCMs of Fq, qu Fq =
{(bf,(B))labe Fq] by the remark above. So the mapping A: F x Fq—)Fq defined by
A(bf,(b))=aforallabe Fq is a well-defined function. For proving A a GPLS of order
q, we have to show A(A) = Fq forallAeT.

Since {f,(x)lae Fq] is a set of q compatible VCMs of Fq, A({a,y)lye Fq]) =
A({(afy(a)) I be Fq}) =F

Fixbe Fq. Foranyae Fq, there is X, € Fq so that b =f,(x,) and so x, = f;l(b)- If
there are a4, € Fy 50 that £, (b) = X, =%, = £, (b) =X, then £, (xg) = b =, (x).
Since {f,(x)la€ Fq] is a set of q compatible VCMs of Fq, a; =a,. So A({x,b)Ixe Fq])
= A([(f;lfb).b) lag Fq}) = A({(f;l(b).fa(f;l (b)) lae Fq})- So A({(x,b) I xe Fq}) = Fq-
Letae Fq. Forany b e Fq, there is a unique ¢, € Fq satisfying fcb(b) = a+b
because we already have [f;:1 (atb)lce Fq} = Fq in the last paragraph. Such ¢,b € Fq,
are all distinct since cbl = cbzimplics fcbl(bl)-b] =a= fcbz(bz)-bz = fcbl(bz)-bz and so
b, =b, since fcb (x) isa VCM of Fq. So, A({(b,at+b) I be Fq]) = A({(b,fcb(b)) Ibe Fq])
1
= {cblbqu } =Fq.

Similarly, A({(b,a-b) I be Fq]) = Fq. This completes the proof.

From this theorem, if we can find a set of q compatible VCMs of Fq, we can

construct a GPLS of order q. Furthermore, if there is a VCM of Fg, we can use the

following lemma to find at least one set of q compatible VCM:s of Fq.
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Lemma 3.3.4. Let f(x) be a VCM of Fq. Then both S¢= {f(x)+alag€ Fq} and

sf= {f(x+a)lae Fq} are sets of q compatible VCMs of Fq.

Proof. Itis easy to see.

Let f(x) be a VCM of Fq. Foreachae¢ Fq, let f,(x) = f(x)+a and g,(x) = f(a+x).
Now, let A¢ be the GPLS defined as in Theorem 3.3.3 using the set S, and let Af be the

GPLS defined as in Theorem 3.3.3 using Sf. The example at the beginning of this

section is a Af with f(x) = (2B+1)x3+2x.

Corollary 3.3.5. There is a GPLS of order q if and only if q > 3.
Proof. From Corollary 2.3.4, there is a VCM of Fq if and only if ¢ > 3. When q

> 3, we take a VCM £(x) of Fq to construct a GPLS of order q.
In the following part, we will study A; and AL At first, we need the following

Lemma 3.3.6. Let f(x) = ax+b and g(x) = cx+d be polynomials over Fg. Then
f(x) and g(x) are compatible if and only if a = ¢ and b # d.

Proof. Itis easy to see that the sufficient part is true.

Since f(x) and g(x) are compatible, b = f(0)#g(0) = d. Suppose, by the way of
contradiction, that a#c. Then the equation (a-c)x = d-b has a solution, say u. So au+b =

cutd, i.e., f(u) = g(u). We have a contradiction. So the necessity is also true and this

completes the proof.
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Using this lemma, we can characterize all GPLSs A of order g so that Al(c)

defines (by Theorem 3.3.1) a linear polynomial for all ¢ € F ..

Theorem 3.3.7. If A is a GPLS of order q so that for eachc € F, the polynomial
f.(x) defined by Al(c) (ie., A({(af ()l a qu]) = {c}) is linear, then there are a VCM
f(x) and a PP g(x) of Fq such that A = goAy.

Proof. Forc e Fq, we can write f (x) = a_x+b, since f.(x) is linear. We already

saw that all f (x) are compatible. From Lemma 3.3.6, all a_, are the same, say a, =a for

allce Fq, and if ¢;#c, € Fq, bcl;tb . So we can rewrite f (x) = ax+b_ forallc € Fq. And

i
{b.lc qu} = Fq. Let f(x) = ax and define g: Fq—>Fq by g(b,) =cforallce Fq. Then,

forallce Fq and for all u e_Fq, ¢ = A(u,f (u)) = A(u,au+b,) = g(Adu,f(u)+b,)). SoA=

gDAf.

Let A, A, be GPLS of order q. Sometimes it happens that there is a PP g(x) of
Fq such that A, = goA, (for instance, Theorem 3.3.7). In this case, the set of all VCMs
defined by A'll(c), CE F'q, and the set of VCMs defined by &'21(c), CE Fq, are the same.
Conversely, if C is a set of q compatible VCMs, we can construct a GPLS A of order q
by Theorem 3.3.3. If there is another GPLS A of order q constructed in some other way
so that the previous set C is still the set of all VCMs of F defined by A1(c), c & Fo in
Theorem 3.3.1, then there is a PP h(x) of Fq such that A = hoA.

Definition. Two GPLS A, and A, of order q are equivalent if there is a PP g(x)

of Fq such that A, = geA,. If A; and A, are equivalent, we denote A ~A,.

TR R e
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It is easy to see that the relation ~ in the set of all GPLSs of order q is an
equivalence relation. So there is one-to-one correspondence between equivalence classes
and sets of q compatible VCMs of F. From Corollary 3.3.5 and Theorems 3.3.3 and
3.3.7, there is at least one equivalence class of GPLSs of order q whose corresponding
set consists of q compatible linear VCMs of Fq. We already know (in Section 5 of
Chapter II)‘that ax+b is a VCM of Fy if and only if a#0,41. By Lemma 3.3.6 and
Theorem 3.3.7, there are precisely -3 non-equivalent classes of GPLSs so that each of
their corresponding sets consists of q compatible linear VCMs of Fq.

Moreover, in each equivalence class of GPLSs of order g, we take the GPLS A
with A(0,a) =a,a€Fg, as a representative element of this equivalence class. In the
corresponding set of q compatible VCMs of Fq, the VCM £,(x) defined by A1(a) satisfies
f,(0) =a.

For studying Theorem 3.3.8 below, we need the following definition. This
definition is a restriction of the definition of mutual orthogonality of Latin squares (see

Definition 9.81, p. 513, [22]).

Definition. Let A}, A, be GPLSs of order q. Ay and A, are mutually orthogonal
if all ordered pairs (A;(a,b), A(a,b)) are distinct.

It is easy to see thatif A and A, are in the same equivalence class, then A, and A,
cannot be mutually orthogonal. Also, note that if A; and A, are the representatives of

non-equivalent classes Y and Y,, respectively, and if A; and A, are mutually

orthogonal, then for arbitrary A, € Y; and A, € Y5, A, and A, are mutually orthogonal.
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Theorem 3.3.8. Forae Fq with a#0,£1, let f,(x) = ax. Then the q-3 GPLSs Afa
of order q are mutually orthogonal.

Proof. Suppose, for the sake of contradiction, that Afa and Afb are not mutually
orthogonal, where a#b. There are ordered pairs (xq,y()#(X,,y,) of qu Fq such that
(Afa(XpY]), Afb(xl,}’l)) = (Afa(xgah), ﬂfb(xz,ﬁ))- Then Afa(xlaYI) = Afa(xz,)’z) and
Afb(xl,yl) = Afb(xz,yz). Let Afa(xl,yl) =c and Afb(xl,yl) =d. From the definition of
Ap, we have f(x))+c =y, = fy(x)+d and f,(x,)+c = y, = f; (x,)+d, i.e., ax;+c = bx;+d
and ax,+c = bx,+d. These imply (a-b)x; = (a-b)x,. Since a-b=0, X1 =X,. This implies
Y1 =¥, since A(R) = Fq for any row R € T. So (x1,¥1) = (X3,y,). We get a

contradiction,

It is well known that the maximum possible number of pairwise orthogonal Latin
squares of order n is < n-1. Gergely proved in [17] that the maximum possible number
of pairwise orthogonal doubly diagonalized Latin squares of order n is < n-3, where a
doubly diagonalized Latin square is a Latin square such that all elements of its symbol set
occur exactly once both on its main diagonal and on its off diagonal. Theorem 3.3.8 says
that there is a set which consists of q-3 mutually orthogonal GPLSs of order q. Using

methods similar to those Gergely used, we will show that the number g-3 is the

maximum possible one. It is

Theorem 3.3.9. The maximum number of mutually orthogonal GPLSs of order q

is g-3.

Proof. From Theorem 3.3.8, it is enou gh to prove that if Aj,...,A, are mutually

orthogonal GPLSs of order q, then n< q-3. Moreover, we can assume, without loss of
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generality, Aj(0,a) =a forallae Fy and 1 <i<n, sinceif 1 <i#j<nandif A and Ej are
equivalent to A; and Aj, respectively, then A, and Aj are orthogonal.

Fixae F; At first, we claim that all A;(a,a) are distinct. Indeed, if there are 1 <
i,j € n so that Ay(a,a) = Aj(a,a) = ¢, then (4;(0,c), &j(O,c)) = (c,c) = (A(a,2), Aj(a,a)).
This implies either a=c =0 ori =}, since A; and A, are orthogonal when i#j. Thus, the
cardinality of the set M = {A;(a,a)| 1 €i<n}isn.

Since (a,a) is in the a-column, A;(a,a)#a for all1 <i<n. Soae M. Since (a,a)
= (a,0+a) is the right O-diagonal, A;(a,a)#0 = A;(0,0) and so 0 ¢ M. Since (a,a) =
(a,2a-a) is in the left 2a-diagonal, A;(a,a)#2a = A;(0,2a) for all i, and thus, 2a ¢ M.

Combining all together, Mqu-{O,a,Za}. Hence,n=IMI<qg-3.
In Theorem 3.3.8, we just considered A because of the following theorem.

Theorem 3.3.10. Let f(x), g(x) be VCMs of Fq with f(0) = 0 = g(0) and
deg f, deg g <q. Then A, A8 are equivalent if and only if g(x) = f(x) is a linearized
polynomial. I

Proof. Let A;and A® be equivalent. Since A%(0,g(0)) = 0 = AK0,f(0)), we have
(a,g(a)) = (a,f(a)) forallae Fy- So g(x) = f(x). Since A;and A8 are equivalent, there is a

PP h(x) of Fy so that A%(x,y) = h(A(x,,y,)) for all x

oo 5Yo € Fq. For any fixed b e Fq,

A8(a,f(b+a)) = AB(a,g(b+a)) = b = h(A(a,f(b+a))) forall a e F,. Write ¢, = Ada,f(b+a))
forallae Fq. By the definition of Ag, ¢, = A(a,f(a)+cy) forall a e Fq. This implies
f(b+x) = f(x)+c,. Take x =0, we have ¢, = f(b). So f(b+a) = f(a)+f(b) forall a,b & Fq.
By Lemma 3.2.2, f(x) is a linearized polynomial.

Conversely, we assume that f(x) = g(x) is a linearized polynomial. Then, for

eac_h be Fq, g(b+x) = f(b+x) = f(x)+f(b). Let h(x) be a polynomial in Fq[x] representing
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the inverse mapping of f. Then h(x) is a PP of F;. Forall a,b & Fy, h(Ag(a,g(b+2))) =
h(Ag(a,f(a)+f(b))) = h(f(b)) = b = A%(a,g(b+a). So Agand A® are equivalent. This

completes the proof.

In the last theorem, we gave a necessary and sufficient condition for At«Ag. We
R ; i - f \g -
will give a necessary and sufficient condition for either A=A, or A'~A® in the next

theorem.

Theorem 3.3.11. Let f(x), g(x) be VCMs of Fq with f(0) = 0 = g(0) and deg f <
qand deg g <q. Then A;-Ag if and only if f(x) = g(x), and Af~A8 if and only if f(x) =
g(x).

Proof. Af-'Ag if and only if there is a PP h(x) of Fq so that Ag(a,b) = h(Ag(a,b))
foralla,b e Fy. Now A{0,0) = AK0,f(0)+0) =0 = Ag(o,g(0)+0) and h(0) = 0. For all a
eFy, ArA, implies h(A,(a,f(a))) = Aga,f(a)) =0 and so Ag(a,f(a)) =0 = Aga,f(a)) for all
ate Fq. Since Ag(a,g(a)) =0, forallae Fq and Ag(R) = Fq for any row R in T, we have
f(a) = g(a) for all a & F whenever A¢and A, are equivalent. S0 if Ap~Ag, then £(x) =
g(x). Conversely, g(x) = f(x) implies Ag= Ag.

By similar arguments, AL-ABif and only if f(x) = g(x). This completes the proof.

Now, we try to express A® in another way. This is based on the following

theorem.

Theorem 3.3.12. Let f(x) € Fq[x] be a VCM and deg f < q. Then the function
fA: ExF —F, defined by fA(a,b) = -a+(b) for all ab € F is a GPLS of order q.

Furthermore, for b € Fq, fp(x) € Fq[x], with deg fi < g, is a VCM and satisfies

|
H
!
i
I
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{(a,fp(2) 1 2 e Fg) = A"1(b) if and only if fy(x) = £1(b+x) where f-1(x) is the polynomial
of degree < q representing the inverse mapping of f(x).

Proof. Let a ¢ Fq be arbitrary. Since f(x) is a VCM of Fq, each of the
polynomials fA(a,x) = -a+f(x), fA(x,2) = -x+f(a), fA(x,a+x) = -x+f(a+x) =
[-(a+x)+f(a+x)]+a and fA(x,a-x) = -x+f(a-x) = [(a-x)+f(a-x)]-a is a PP of Fq. So fA
is a GPLS of order q.

Fixbe E,. fy(x) is a VCM satisfying {(a,f,(2)) la e Fq] =fA-1(b) if and only if
b= fA(a,fl.)(a)) = -a+f(fy(a)) forall a e Fq. The last statement is equivalent to fy(x) =

£-1(b+x). This completes the proof.

From this theorem, we see that A8(a,b) = -a+gl(b) forall a,b e Fq.

We already mentioned at the beginning of this section that if A is a GPLS of order
q and if o is a PLS-transformation, then Aect is still a GPLS of order q. We will see later
that if f(x) is a VCM of F.., then Apa. is equivalent to Ag for some VCM g(x). At first,

we need two Lemmas.

Lemma 3.3.13. Let f(x) be a VCM of Fq and let « € G be a PLS-transformation.
LetL={(af(a)las Fq]. Then

(1) if (x1,y1)s (X,¥,) € (L) and X1 =X,, theny; =y,,

(2)  if werewrite a(L) = {(a,g(a)) lae Fq], then g(x) is a VCM of Fq.

Proof. From Theorem 3.2.4, G is generated by T(aby Vs Os e 2 and
; -

ooyl

V (if p =3). Soitis enough to check all such mappings with c.

T(a,b)(L) = [(x0+a,f(x0)+b) | Xo € Fq] = {(xo,f(xo-a)-i-b) | X, B Fq], By Theorem

2.2.1, we see that (1) and (2) hold and g(x) = f(x-a)+b.




82

V(L) = ((a,-f(a)) lae Fq]. By the same theorem, (1) and (2) hold and g(x) =

-£(x).
o(L) = ((a+f(a),-a+f(2)) | a e Fy) = ((a,-2f(a)+a) | a e Fy} where f(x) is the

polynomial representing the inverse of f(x)+x. By Theorem 2.5.4, (1) and (2) hold and

g(x) = -26(x)+x.
=] .
For u'(aow"an-l) € G, let h(x) = aox+a1>:I’+...+::1n_1xl:’n . Then h(x) is a PP of Fq.

Let h™1(x) be the inverse mapping of h(x). Then

5| . n-1 .
B, @) = {( TaaPl, Ta(f@)P)laeFy) = (h(a), (eD@) | aeFy)
0" n-1 i=0

i=0
= {(a,(hefch H(@)) la e )

By Theorem 2.2.1, (1) and (2) hold and g(x) = (hefeh™1)(x).
Forp =3, y(L) = {(a,a-f(a)) la e Fq}. By the same theorem again, (1) and (2)

hold and g(x) = -f(x)+x. This completes the proof.

In Lemma 3.3.13, the polynomial g(x) is unique when we consider deg g < q.

We denote this polynomial g(x) = (af)(x).

Lemma 3.3.14. Let f(x) be a VCM of Fq and leta e Fq. Then for all ¢ € G,

af,(x) = af(x)+b, for some b, € Fy, where f,(x) = f(x)+a. Furthermore, if a;#a,, then
ba #bg,

Proof. Asin Lemma 3.3.13, it is enough to consider T(ab) 0,53 u(ao""'an-l) and

y (if p=3). As we showed in Lemma 3.3.13, it is easy to see that this lemma is true for

0= Ty ) O and y (if p = 3).

i i I e A i . e T V= =1 s Sy Wk T i T e

i'
!
{
{
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From the proof of Lemma 3.3.13 again, if y = x+{(x), then Gfa(y) = -x+f(x)+a =

of(y)+a and so this lemma holds.

Also, W fal®) = (hef,rh 1)(x) = h(f(h™1(x))+a) = h(f(h" (x)))+h(a) =
Ma,..aq 1)f(x)+h(a) and so the lemma holds. This completes the proof.
.

Now we can prove our claim using Lemmas 3.3.13 and 3.3.14.

Theorem 3.3.15. Let f(x) bea VCM and o € G. Then Afocx~Aa_1 ¢

Proof. By Lemma 3.3.14, a’lf (x) = o !f(x)+b, and b, ranges over F when a
does. Define the polynomial g(x) € Fq[x] by g(a) =b, forallae Fq. Then g(x) is a PP of
Fq. Note that

FxFy = ((@f(w)+a) luaeFg} = (w0 f(u)+b,) lu,a e Fyl.

Now, for all (u,o 'f(u)+b,) € quFq, A (u,a-lf(u)+ba) =b, = g@@) = g(A(u,f(u)+a))

= g(Adau,er 1f(u)+b,))) = (goApar)(u,00 f(u)+b,). So A= geApL.

We note that, in Theorem 3.3.15, the polynomial g(x) may be taken as follows:

n-1 :
gx) = xif a =1, oro; g(x) = x if « =v or y (if p = 3); and g(x) = _Eaixl’1 if

1=0

o= u(ao""-an-l)' In any case, g(x) is a linearized polynomial of Fq over Fp.

Also note that Theorem 3.3.15 is no longer true if we consider Af. The following
is a counterexample.

Example. Let Fg = (0, 1,2, B, B+1, B+2, 2B, 2B+1, 2B+2} with B2 = 2B+1.
Let f(x) = (2B+1)x5+2x. By Lemma 2.2.2, we see that f(x) is a VCM of Fq. The

following table is the GPLS Afeo.
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Table 7. Selected GPLS Afeo.

0 1 5 B B+1 |B+2 |2B 2B8+1 | 2B+2

0 0 B+2 [2B+1 |2B+2 |P 2 B+1 1 2B

1 2B+2 |1 B 0 28 B+1 2B+1 [B+2 |2 i
2 B+1 2B |2 B+2 |1 2B+1 |0 26+2 |B |
B 2B+1 |B+1 |0 B 28+2 |1 2 28 |B+2

B+1 1 2B+2 | B+2 2 B+1 2B B 0 2B+1

B+2 B 2 2B 2B+1 |0 B+2 2B+2 | P+l 1

28 B+2 |0 2B+2 |1 28+1 |B 2B 2 B+1

2B+1 (2B B 1 B+1 |2 2B+2 |B+2  |2B+1 |0

28+2 2 28+1 |B+1 |28 B+2 |o 1 B 2B+2

Let g,(x), a € Fg be the corresponding 9 compatible VCMs of this GPLS Alo.
So for all b € Fy, Afoc(b,ga(b)) = a. It is not difficult to see that g (x) = (B+2)x7+x.

Suppose, by the way of contradiction, that there is ¢ € Fg so that gl(x) = g (x+c). In this
case, 2B+1 = gl(O) = g,(c) and so ¢ = B+1. Now, 1 = gl(l) = g,(B+2) = p+1 and we

get a contradiction. So Afo is not equivalent to A for any VCM g(x) of Fy. By a similar

argument, Al is not equivalent to A, for all VCM g(x) of F.
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CHAPTER 4

MISCELLANEOUS PROPERTIES OF
PERMUTATION POLYNOMIALS

1. Properties of Permutation Polynomials

As indicated in Chapter I, Section 4, permutation polynomials have been studied
extensively. An excellent reference is Lidl and Niederreiter's book [22]. In this section,

we will give some additional properties of permutation polynomials.

Throughout this section, any polynomial f(x) € Fq[x] we consider satisfies f(0) =
0. For f(x) € Fy[x], write f(x) = ax"'+...+ax * where 1 < nj < ...<n, < q-1 and
a;..a#0. Letd = ged (q-1, ny-1,...,n,-1). Let U = < {(@1/4> be the subgroup of F’:l
generated by C(q'l)"d where { is a primitive element of Fq. Ife= qu , then the quoticnt‘

group is F¥/U = {COU,CU,...,Ce'lU].

Definition. The numbers d and e are called the rank and index of f(x),

respectively.
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Now, forany a e F;, there are 0 <i <e-1and 0 <j <d-1 such thata = {™°. So

n n -1 n,-1 i(ny-1 i(n.-1 ;
f(a) = a;a +..+aa t= :a(alalnl +.4aal ) = a(alt_,( 1 )+...+a[t‘;( t )). If we write

4 . -
o, = aICl(nl )+...-i~a[t‘;l(ﬂl D for each 0 <i <e-1, then f(a) = act; whenevera € ¢'u.

Lemma 4.1.1. f(x) is a PP of F if and only if the mapping defined by G(CiU) =
(aiCi)U is a permutation on qu[U

Proof. We already saw that f(a) = ao,; whenever a € t’;iU. So, if a,;#0, f(QiU) =
(04)U e F/U.

f(x) is a PP of Fq if and only if f(Fq) = Fq. Since f(0) =0, f(Fq) = Fq if and only
if f(F: ) = FZ The last equality is equivalent to that all o.,...,0L,.; are non-zero and
(aiﬁ‘)U;&(anJ)U for 0 < i#j < e-1, and so equivalent to that ¢ is a permutation on F:[U :

This completes the proof.
Let y, be a multiplicative character of Fq of order e.

Lemma 4.1.2. Let B,....5. € F:. Then the mapping defined by G(CiU) =
(B,L)U is a permutation on F/U if ond only if q;c(lsi[s]?‘);ewc(t;j") whenever 1 <izj <e.
Proof. Since B,...B € F:, o: F:/U—>F;/U For 0 <i,j<e-1, O(CiU) = G(CjU)
if and only if B.{'U = BjCjU and so Biciﬁilt;'j € U. Hence, it is equivalent to
1=y (Bi8;'C) = wo BB} oL

Combining Lemmas 4.1.1 and 4.1.2 together, we have immediately
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Theorem 4.1.3. Let f(x) € Fq[x] have rank d and index e. Let { be a primitive
element of Fq. Moreover, let o; = C‘i fi (C_,i) for 0 <i<e-1. Then f(x) is a PP of Fq if and
only if 00 for all 0 <i < e-1, and (0,0 )2y, (L) for 0 < ij < e-1, where W is a

ij

multiplicative character of Fq of order e.

Note that Niederreiter and Robinson [28] got a similar result for special

polynomials of the form ax@+"-D/1 4+ bx with g = 1 mod n.

Lemma 4.1.4. Let f(x) € Fq[x] be of index e. Let  be a primitive element of Fq
i el .
and let o; = € f(C") for 0 <i<e-1. If f(x) is a PP of F, then y (o) = 1, where y, is
' i=0
a multiplicative character of F, q of order e.
Proof. Let U = ({10 <i<d=%Y. By Lemma 4.2.1,if f(x) is a PP of F,

. -1 e-l . e-1 :
[(aiC')U ¢!0<ige1} = F:/U & So (i‘%ui) (HC‘) = _T{)(Otiﬁl) is either in Uy whenever e
i= i=

i=0
: : el .
is odd or in C_,“ﬂUd whenever e is even. If e is odd, []{'e Uy. If e is even,
i=0

el . e-1 e-1
[1¢e C,e'QUd. In any case, we have [Jo; € Uy. So y (T1oy) = 1.
i=0 i=0 i=0

Note that the converse of Lemma 4.1.4 is not true. For example, let's consider q
=13 and f(x) = 6x9+10x3+11x. Note that2 is a primitive element of F5. Also note that
the index of f(x) is 3 since d = ged (12, 0, 4, 8) = 4. Now o, = oy = 4 and oy = 2.

So w3(1-4-2) = 1. But (¢,2°)U, = U, = (0,;-2)U,. By Lemma 4.1.1, {(x) is not a PP

of F13.
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When we consider f(x) to be of rank d and of index e, we may write as f(x) =
el |
Zaix‘d+1. Now, let C; = circ (a,,a;,.-,8,.1)-
i=0

Lemma 4.1.5. Let f(x) € Fq[x] be of index e. Let P(x) be the characteristic

. e-1 i .
polynomial of Cy. Then P(x) = [](x-a;) where a; = {f({) for 0 <i < e-1. Moreover,
i=0
Cg is similar to the diagonal matrix diag (ct,0t;,...,0t,_1) and so det Cp = 0t 0ty ...0, ;.
el |
Proof. Let f(x) be of rank d and write f(x) = Yax'4*l. Then C; = circ
i=0
' el
(2,,815.-484_1)- Let g(x) be the representer of C. Then g(x) = Eaix‘. Since { is a
i=0
primitive element of Fq, b= C_,d is a primitive eth root of unity. By Theorem 1.3.7, C;is
el .
similar to diag (g(l),g(b),...,g(be‘l)). By Corollary 1.3.8, det C; = _Elog(b')and P(x) =
I:
ol ' i
Eo(x-g(b )). If we can prove g(b) = { f({) = ;, we are done.
I
5 el .. el - A . el s i
Now, g(b) = Tap” = ¥a;(th¥ = ¢ $a,¢h¥*! = ¢6(C) = ;. This
j=o j=o j=o

completes the proof.

Combining Lemmas 4.1.4 and 4.1.5 together, we have immediately the following

Theorem 4.1.6. If f(x) € Fq[x] is a PP of Fq and is of index e, then y (det Cp) =

1, where v, is a multiplicative character of order e.
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If f(x) € Fq[x] with degree < g-1 and f(0) = 0, we may write f(x) =

-1 . ;
a1x+a2x2+...+aq_1xq . Hence, we may consider each polynomial of degree <g-1 asa
polynomial of rank 1. Since we discuss properties of PPs in this section, we consider all

polynomials with degree < q-2 by Theorem 2.3.3. Moreover, we consider the circulant

matrix Mg with the first row-vector (O,al,...,aq_z) instead of the circulant matrix C; with

the first row-vector (al,a,z,...,aqﬂz,{)). With this modification we have

Theorem 4.1.7. Let f(x) = a;x+...+a, 53> € F_[x]. Then f(x) is a PP of F if

and only if the characteristic polynomial P«(x) of M¢is P(x) = xa1-1,

Proof. Since f(0) = 0, f(x) is a PP of F if and only if {f(a) la € F:} = F’; Since

f(x) = alx+---+aq_2xq'2 and every element of F; is a g-1st root of unity, we have Pg(x) =

IT (x-f(a)) by Corollary 1.3.8. So {f(a)la¢ F:} = P: is equivalent to Pg(x) = x3-1.
aeF"

q
This completes the proof.

q2 .
We note that Raussnitz [35] obtained the result that if f(x) = .Zaix‘ and My is the
1=0

circulant matrix with the first row-vector (ao,al,...,aq_z), then f(x) permutes Fq if and
only if the characteristic polynomial of M;is (x3-x)/(x-£(0)). Theorem 4.1.7 is a special
case of Raussnitz's result.

: Q2
For f(x) = a;x+...+a nzxq 2e Fq[x}, let Li(x) = Zaiqu ! be the associated
i=1

linearized polynomial of qu-l over Fq. For these two polynomials f(x) and L(x), we

q

have the following relation.
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Theorem 4.1.8. If f(x) is a PP of Fq, then L(x) is a PP of qu-l .

Proof. Since f(x) is a PP of Fq, P(x) = x4 by Theorem 4.1.7. In particular,
det Mg =-1=0.

On the other hand, let A = (aiﬂ) with i-j mod (q-1). Since each a;& F, a? = g
forall 1 <i<g-1 (note a, ; =0). So A is the circulant matrix with the first row-vector
(al,O,aq_z,...,az). Since M; is the circulant matrix with the first row-vector
(0,213,134 9), it is easy to see that det A = (-1)(‘:"2)2 det M = 1#0. From Theorem
1.4.12, L(x) is a PP of qu_l !

Note that the converse of Theorem 4.1.8 is not true. For example, f(x) = x2 is
not a PP of F5, but L(x) =x3 is a PP of Fo

Using Theorem 4.1.7, we also have

Theorem 4.1.9. Let q be odd. If f(x), g(x) € Fq[x], with f(0) = 0 = g(0), are PPs
of Fq, then f(x)g(x) is not a PP of Fq.

Proof. Since f(x) and g(x) are PPs of Fq, Pe(x) = xd-l] = Pg(x) by Theorem
4.1.7. Sodet Mg=-1=det Mg. Hence, det (MfMg) = (det Mp)(det Mg) =1.

Now write f(x) = ao-Hx1x+...+aq_2xq'2 and g(x) = b0+blx+...+bq_2xq-2 with
, ¢l . G2 ati
a,=0=b,. Also, we can write f(x)g(x) = 2cx! mod (x3-x). Then ¢; = j?iajbi_j with i-j

i=1

mod (q-1). If Cq-1#0, f(x)g(x) is not a PP of Fg. So we consider c_; = 0. Then Mg, is

the circulant matrix with the first row-vector (O,cl,...,cq-z) = (cq_l,cl,...,cq_z). From the
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q2

formula ¢;= ,Zajbi-j’

each ¢; is the inner product of the first row-vector of M¢ and each
=1

column-vector of Mg, Since Mfl\/[g is still a circulant matrix, Mg, g= MfMg. So

det Mf_g =det (MfM,) = 1 and hence, Pf,g(x);’:xq'l—l. Thus, f(x)g(x) is not a PP of Fq by

)
Theorem 4.1.7.

Note that Theorem 4.1.9 is no longer true when q is even. For example, both
f(x) =xand g(x) = x2 = f(x)f(x) are PPs of F‘,_1 when q is even.

2. The Polynomial I1+x+x%+...+xK

The polynomial 1+x+...+xX plays a very important role in the study of finite
geometries. We first recall some basic properties of finite geometries which can be found
in Lidl and Niederreiter's book (see Section 3, Chapter 9, [22]).

A finite projective plane is defined as a set of elements, called pbinfs, together
with sets of points called lines, as well as a relation I, called incidence, between points
and lines subject to the following conditions: (1) every pair of distinct lines is incident
with a unique point; (2) every pair of distinct points is incident with a unique line; (3)
there exist four points such that no three of them are incident with a single line. Let K be
any field. Let P = {(x,y,1) | x,y € K} U {(1,0,0)} U {(x,1,0) | x € K} and let L be the
collection of sets L which are either L = {(1,0,0)} U {(x,1,0) | x e K} or L = {(x,y,1) |
there are a,b,c € K with (a,b)#(0,0) such that ax+by+c = 0}. Every element of P is
called a point and every element of L is called a line. Moreover, we define a relation I so

that a point P € P is incident with a line L € L if and only if P ¢ L. It is known that

(P,L,I) forms a projective plane. This projective plane is usually denoted by PG(2,K).
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Now, letq = 2" na positive integer. An oval in PG(Z,Fq) is defined to be a set

of q+2 points of PG(2,Fq) no three of which are collinear (i.e., on the same line). For

any f(x) € Fq[x], let A(f) = {(f(c),c,1) I ce Fq] v {(1,0,0), (0,1,0)}. Then we have the _

following

Theorem A. The set A(xk*1) with 0 <k < g-2 is an oval in PG(2,Fy), q even and
q > 2, if and only if the following conditions hold;
(D) ged (k+1,g-1) = 1;

(2) ged kg-1)=1;
(3)  [(x+D1)k*1+1)/x is a PP of E,-

In fact, if we consider (x+1)¥*! instead of xK*1, this theorem is still true. In this
case, condition (3) becomes

(3) (& *1+1)/(x+1) = 14x+...4xKisa PP of F.
Since [(x+1)¥*1+1)/x is a PP of F if and only if (xk+1+1)/(x+1) is a PP of E,, we may

restate this theorem as follows.

Theorem B. The set A(xK*!) with 0 < k < g-2is an oval in PG(2,Fq), q even and
q > 2, if and only if the following conditions hold:

(1) ged (k+1,g-1) = 1;

(i) ged kg-1)=1;

(i)  1+x+..+xXisa PP of o

In this section, we will prove first that conditions (i) and (ii) in this theorem are

superfluous. Later, we will study some properties of this polynomial 1+x+...+xX.
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Lemma 4.2.1. Let q = p", p a prime. If f(x) = 14+x+...+xK is a PP of Fq, then

there is a nonnegative integer m such that k = mp(p-1)+1 mod p(q-1), mp(p-1)+1 < g-2,

and

mp(p-1 -1 ;
gcd['—lg‘(zp——)+ l,qT] if q is odd
ged(mp(p-1)+1,g-1) =1 =
ged (m+1, g-1) if q is even.

Proof. Write k = I(q-1)+r, where 0 < r < g-1. Let g(x) =
1+(I+1)x+...+(!—i—l)xr+lxr+1+...+1xq'1. Then f(x) = g(x) mod (x%3-x). Since f(x) =
14+x+...+xK is a PP of Fg, 1 < deg g < q-2 from Theorem 2.3.3. So /=0 mod p.
Hence, k =r mod p(g-1), 1 £1r< -2 and g(x) = 1+x+...+x".

Since f(x) = g(x) mod (x4-x), f(x) is a PP of F, if and only if g(x) is a PP of By
Also, g(x) is a PP of Fq if and only if g (x) = x+...+x" is a PP of Fq.

Let Mg be the circulant matrix of order (q-1)x(q-1) with the first row-vector
(4]

(0.1,...,1,0,...,0). Moreover, let C be the circulant matrix of order (g-1)x(q-1) with first
r-terms '

row-vector (1,...,1,0,...,0). From Theorem 1.3.9,
I-fterms

r ifged(r,g-1)=1
detC= .
0 ifged(r,g-1)>1 .

S0, det My = (-1)* det C = 1. Since g (x) is a PP of F, det M, =-1inFg, by

Theorem 4.1.7. So,r=1 mod p and ged (r,g-1) = 1.

Ifq=p,thenr=1and so k=1 mod p(p-1). Let q=p"withn> 1. Since FIJ is

a subfield of Fq and g,(x) is a PP of Fq, g,(x) is also a PP of Fp. Sor=1 mod p(p-1).
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There is a nonnegative integter m such that r = mp(p-1)+1. Hence, k = mp(p-1)+1 mod

p@@-1).
Finally, we write g(x) = Tx+.4x™PO D Eor a6 Es

= mp(p-1)/2+1
amp(p 1)+2_1 _ (3.2) plp i

g(a) = a-1 a-1

Now, it is easy to see g(-1) = 0. Since g(x) is a PP of Fq, g(a)#0 for all a#-1. So
(a2) MP(P-1)/2+1 _120 for all az+1. This implies that either ged ( W +1,%1) = 1 when

q is odd, or ged (m+1,g-1) = 1 when q is even.

Matthews [24] has proved thatif q =porq= p? is odd, then f(x) = 14+x+...4xK

isa PP of Fjif and only if k=1 mod p(q-1). Using Hermite's Criterion, one can easily
get Matthew's result from Lemma 4.2.1.

Now we can modify Theorem B as follows.

Theorem 4.2.2. The set A(x¥*1) with 1 <k <g-2 is an oval in PG(2,F), q even

and q > 2 if and only if 1+x+...4x¥ is a PP of F.

Proof. From the theorem before Lemma 4.2.1, we just need to show that if

l+x+...+xK is a PP of F, then ged (k,g-1) = 1 = ged (k+1,g-1). But the last statement

follows from Lemma 4.2.1 immediately. This completes the proof.
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Now, we study some properties of the polynomial 14+x+...+xX, From now on,
we always consider k = mp(p-1)+1 < g-1, ged (mp(p-1)+1,q-1) = 1 and either
ged ( mg(?lel 31,51 if q is odd or ged (m+1,g-1) = 1 if q is even because of Lemma
4.2.1.

Theorem 4.2.3. Let q =2" with n > 2. Let f(x) = 14+x+..+xX¢ Fq[x] with
k<q-3. Then f(x) is a PP of F, if and only if g(x) = 1+x+..+x3>* is a PP of F.

Proof. g(x) = lx+..+x3?* is a PP of F if and only if h(x) = x+..+x¥*Fisa
PP of F.

Forae Fq and a=0,1,

1,42k R e e
Ay_p1, -2 a2k g @h) 41 @h @l T+
h(a’)=a"'+a“+..+(a") =a e 1

k+1
ks J S RONR S A
a+l
0 ifkiseven
Moreover, h(0) = 0 and h(1) = ) Also, f(0) =1 and
1 ifkisodd.

1ifkiseven
f(1) = So if k is odd, h(0) = f(1) and h(1) = f(0).
) Oifkisodd. () =£D) (1) =1(0)

From Lemma 4.2.1, if f(x) (or h(x)) is a PP of Fq, then k is odd. Hence, f(x) is a PP of

F if and only if h(x) is a PP of Fy This completes the proof.
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Combining Theorems 4.2.2 and 4.2.3, we have

Theorem 4.2.4. Let 1 <k <q-3, where q > 2 is even. The set AxK*1) is an oval
in PG(Z,Fq) if and only if the set A(x3%1) is an oval in PG(2,Fq).

Note that when q is odd, Theorem 4.2.3 is no longer true. For example, f(x) =

1+x is a PP of Fq. But g(x) = 14x+...+x9-3 is not a PP of Fq, by Lemma 4.2.1, because

g-3 # 1 mod p for any odd prime p. In fact, we will see that if f(x) = 14+x+...+xX is a PP
of Fq and q is odd, then k < 92—1 To prove this, we need the following

Lemma 4.2.5. Let C be an nxn circulant matrix with the first row-vector

(0,1,..,1,0,...,0). If 7= <m <7, then the coefficient by, of x1(#1) in the

m-terms
characteristic polynomial of C is by, = (-1)! }fT (I"'m(f"'l)'“ ).
Proof. Write a, =0 =a

mel = e =81 and a; = 1=..=a,. Then

b!+1 = E Sign (T) at(l 1)-il"'a‘[(i[+]_)'if+l. If a.c(l)__l =1 and T(i)-i Ej mod n with O Sj <n,
T

then 1 <j<m. So,ifa = | appears in the expansion of b, ;, then t

wiy)-iy Al gy
is a cycle of length /+1 because l:_l <m< % Then, we can write
b,y =(-1) 3 - P
1
a 0<i;<iy<...<ij 1<n-1 DU
0<i;<m-1,0<i;-i;, ;+n<m

Let a; ...ai£+1 be a term in the expansion of b, ;. And let =1

1 - forl1<j<!

j+17
o I+1
and let g =10 Then 0 < i1 <m-1, Zti =nand 1< t; <m for 1 <i <£I+1. Since
i=1

i, $n-1and /m <n, we have m > t;,; 2 max {i;+1,n-/m}. Fix 0 <i; <m-1 and max
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l
{i;+1,n-Im} <t;,; Sm. Then Zti =n-t;,; with 1 t;<mforall 1 <i <. The number

i=1
I
s of ordered I-tuples (ty,...,t;) satisfying »'t;=n-t;;and 1<y <mforl<is< lis the

i=1

2L n-tq . . .
coefficient of the term x '*! in the expansion of (x+x2+...+xm)‘ and thus is the
- -1l : _ : 5
coefficient of the term x 1™ in the expansion of (1+x+...+x™ Iyl Since the coefficient

n-t;, 1-1 . mi-n+t;, 1 . ;
of the term x *1” equals the coefficient of the term x I+1 in the expansion of

I-1+ml-n+tf+1

(1+x+...+4x™ D and 0 < m/-n+t;,; <m-1, we have s = ( -1

). (Note that if O
- C : . a\b : b-1+c
< ¢ < a, the coefficient of the term x° in the expansion of (1+x+..+x%)”is (7} ; ))-

Now, there are two cases.

Case 1. 0<i; <n-/m-1. The number of ordered (/+1)-tuples (tyseestplipy)

I+1
satisfying Eti =n,n-/m<t, ;<m,and 1 <t <mforl1<i<l/is
i=1
0 I-14mi-n+t mE-n ;g4 l+m(l+1)-n
X ( 1) = )=t ). So the number of nonzero
= 1= 1 : i m(l+1)-n
t;,1=n-/m 1=0

terms &; .a; 3, With 0 <} < n-/m-1 is (n-Im) G

Case 2. n-Im <i; <m-1. The number of ordered (/+1)-tuples (ty,...,t;t, 1)

I+1 |

satisfying Zti =nij+tl<y ;<mand 1<t <mforl <i</is 0
i=1 f

g (Fmineyy m(‘g)‘“ (14 mf'g'll (L) _ pmGn g frmbndy
= | ot i & 1 m(/+1)-n ml-n+i

.d:od:
1 Ui

So the number of nonzero terms 3

with n-/m < i1 <m-1is
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m-1 I+ml-n+i 5 m-1  Lemln+i
I+m(l+1)-n L= l+m(l+1)-n § g
ii=§’-l‘m (< m(/+1)-n )=k ml-n+i; )] = (m(+1)-n) ( m(/+1)-n ) if%-lm ml-n+iy
: m(+1)-n-1 . . l+m(l+1)-
= (D) (R -3 (D= @y GREED - G

Combining Cases 1 and 2 together, we have

byyy = G {(netm) (R 4 (m@ee1)-n) GERED - (G D)

=(-D! {m (I+m(ll+1)~n) } (!+T£!4il)-n )} = (-1y! 1.‘:_1 (£+m(£f+1)-n ).

This completes the proof.

From the proof of Lemma 4.2.5, it is easy to see that if ;;7 < m <7 for some

positive integer [, then the coefficient of the term x“'i, 1 £i £, in the characteristic

polynomial of an nxn circulant matrix C with the first row-vector (0,1,...,1,0,...,0) is 0.
m-lerms

Theorem 4.2.6. Let £(x) = x+...+x™PP- D+l ¢ Fy[x] and let;"‘}l < mp(p-1)
+1< gi—l for some positive integer I. If f(x) is a PP of F,, then (H(Hl)(mpfp'l)ﬂ)'(q'1) )
=0 mod p. In particular, if q is odd and f(x) = x+...+xmp(p'1)+1, 1 < mp(p-1)+1 <qg-1,

is a PP of Fg. then 1 <mp(p-1)+1 < ‘12—1- :

Proof. Consider the associated matrix Mg and its characteristic polynomial Py.

By Lemma 4.2.5, the coefficient of the term x3" D) of p i
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-1 ﬁil (”(mp(P'l);“l)(Hl)-(q‘I) ). Iff(x) = x+...+xmp(p'1)+l is a PP of Fq, then, from

Theorem 4.1.7, it is 0. So (*P@ VDD y = o mod p.

Now, let q be odd and 1 < mp(p-1)+1 < g-1. If mp(p-1)+1 = %%, then the

coefficient of the term x93 of Pgis (1+(1+1)(mp1(‘}1)+1)'(q'1) ) =2mp(p-1)-q+4 =4 # 0 mod

p and so f(x) is not a PP of Fq.

3. Binomial Permutations

One of the major problems in finite field theory is to characterize when a
polynomial permutes a given field. Dickson characterized all polynomials which have
degree < 5, and some polynomials of degree 6 (see [22]). In gcneral_, it seems very
difficult to characterize a polynomial to be a PP, even if the polynomial has a simple form
like a binomial f(x) = axK+bxJ. Lots of work have been done on binomials (see [4], [6],
[25], [28]). In this section, we study some properties of binomials which are PPs on

finite fields. First, we generalize a result obtained by Niederreiter and Robinson ([28]).

Theorem 4.3.1. Letq=p"beodd. Let1<m< % Then the polynomial

f(x) = ax(@D/2+M 1 pxM ¢  [x] with ab=0 is a PP over Fy if and only if ged(m, %) = 1

and either n(b2-a2) = 1 when m is odd or n(b%-a2) = -1 when m is even, where 1) is the

quadratic character of Fq.

i
|
|
1

il

|

y
1
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Proof. From Hermite's Criterion, if f(x) is a PP of Fq, f(x) has only one root in
Fy. Since c@D2-+1forallce F;, the necessary and sufficient condition that f(x) =
ax(@1/2+myphym — 4xm(x(@-1)/245-1p) have only one root on F is that albztl. Itis
equivalent to N(b%-a2)#0. From now on, we assume a”lb#+1.

Let g be a primitive element of Fq and let gcd (m,%—l- )=d. Ifd > 1, we have
f(g2((@-1)/2d+1)y — f(g2) and so f(x) is not a PP of F,. Hence, ged mil)y=1isa

necessary condition for f(x) to be a PP of Fq. Now, foru € Fq,

0 ifu=0
f(u)y={ UuT(a+b)  ifuisasquare
u™(b-a) if u is a nonsquare .

We have the following two cases.

Case 1. mis odd. Then forue F:, u™ is a square of F, if and only if uis a
square of Fq. Moreover, ged (m,ﬂ) = 1 implies ged(m,q-1) = 1 and so uM#v™

whenever uzv. So f(x) is a PP of F{l if and only if ged (m,q-'l) = 1 and exactly one of

f(u) and f(v) is a square of Fq whenever 1(u)#n(v). The last statement is equivalent to
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that ged (m, %8 ) = 1 and m(b+a) =M (b-). So f(x) = ax(@D/Z#M+bx is a PP of Fy if and
only if ged (m,%LL) = 1 and (b2-a?) = 1.

Case 2. mis even. Then ged (m,q:,z—1 ) = 1 implies that q = 3 mod 4 and that
ged(m,q-1) = 2. Hence, u™#v™ whenever u#v € Fq and both of them are either squares
or non-squares. So f(x) is a PP of F, if and only if ged (mEL) = 1 and n(EW)=N(EW))
whenever n(u)#n(v) in F; From the expression for f(u), the last statement is equivalent
to that gcd (m,gi—l) =1 and n(b+a)#1n(b-a) because N(u™) =1 =n(v™) for all u,v € FZ.
Hence, the necessary and sufficient condition for f(x) = ax(@D/2+m M 44 be a PP of Fq
is that ged (mS") = 1 and n(b%-a?) =-1. This completes our proof.

Now, we consider the general case: f(x) = axK+bx! e Fq[x], 1<l<k<qg-2. We

need the following

Lemma 4.3.2. Let K be a field and let a,b € K. Let 0 <k < n be an integer. Let

C be the nxn circulant matrix with the first row-vector (b,0,...,0,a,0,...,0). If d = ged

T

the k+1st position
(k,n), then det C = (b™d-(a)Vd)d

Proof. Let (sign ©) 21 g(1)2n,0(n) be a non-zero term in the expansion of det C.

Then for 1 £i<n, 3 (i) = A Or b. If 8 o(i) = b, then (i) =1i. So sign o is determined

by thOSE 1 With al‘c(l) =a.

i
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Suppose that 3 olip) = Then o(i,) = i, +k mod n. This implies ao(io). ) =

and so Gz(io) =o(o(i,)) =i +2k mod n. Continuing this process, we finally get

G“Id(io) =i, So we getacycle (io,c(io),...,O'“/d'l(io)) of length % . Note that any two
such cycles (iy,6(),-0"41G,)) and (i;,6(}),....0"4-1(i))) are not disjoint if and only
if i; =iy mod d. So & can be expressed as a product of disjoint cycles which all have

length g . When o is a product of / disjoint such cycles,

I(n/d- )nud n-n//d nﬂdbn(d-l)fd

(sign ©) &, o112, o = 1) = (1)'(-a)

Finally, for each 1 </ <d, there are exactly (? ) permutations G such that

nl/d n(df)fd
R 1)( a)

(sign ©) a
because we can choose 1 <i  <d, where i is as in the last paragraph the first element in

each cycle of 0. So
/d
JarEva z ¢ 1) ( )nl)'d n(d-1), (bm’d_ (_a)ru'd)d-

=0

This completes the proof.

This lemma is a generalization of Ore's result (see [30]). Using this lemma, we

have the following necessary condition.
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Theorem 4.3.3. Let f(x) = axk+bx/ e F [x] with 1 </ <k <q-2. Letd =
ged (k-1,--1,g-1) and let m = ged (!‘a'i, GLdl ). If f(x) is a PP of F, then

((g-1/d-1)I-1)Md | (g-1)/md

Vig-1yd [(- 1) (®

(_a)(q-l)fmd)m] =1

where Vig-1)/d is any character of Fc1 of order 9;1—1 .

Proof. Let C be the gd_l X gd—l circulant matrix with the first row-vector

(....,0,b,0,...,0,a,0,...,0). Let A be the qEI X g;i_l circulant matrix with the first row-

(i i
(I-1)/d th place (k-1)/d th place

vector (b,0,...,0,a,0,...,0). Then we have
7 .

(k-N)/d th place

-1)/d-1)(l-1)/d -1)/d-1)(-1)d -1)/md
dot C = (1) EIDEDA g @ DRDEDA  (aimd

m

(g-1)/md
)-

)

by Lemma 4.3.2. If f(x) is a PP of Fq, then

((g-1)/d-1)(F-1)/d -1)/md -1)/md
TG | (@ limd (@D )m)=1

Vg1 (('1)

by Theorem 4.1.6.

In this theorem, if /=1 and d = k-1, thenm =1 and

((@-1)/d-1)0  (q-1)/d (a-1)/d
\If(q_l);d {("1) (b - (-a) )] =

implies b@1/d - (-2) @M = ¢@-DA for some c & F.
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Theorem 4.3.3 is a necessary condition for a binomial to be a PP of Fq. Now,

we give a sufficient condition.

Theorem 4.3.4. Let f(x) = bxk*l+ax € Fq[x] with k| (g-1). Write g-1 =km. Let
g(x) = ((b+a)x-a)™-b™. If a%-b and g(x) | (xX-1), then f(x) is a PP of F.

Proof. If b = 0, then f(x) = ax is a PP of F  fora e F: and thus the theorem
holds. So, we consider b#0. Moreover, f(x) = bx¥*1+ax is a PP of F if and only if
xK+t1iplax is a PP of F,. Hence, it is enough to prove this theorem in the case b = 1.

Since a#-1, g(x) had degree m. Moreover, g(x) | (xk-l) implies that g(x) has m
distinct roots in Fq. Let { be a primitive element of Fq. Then each root of g(x) is of the
form ij for some 0 <j <k. Say lem,...,cjmm are all distinct roots of g(x). So, for
each1<i<m, (1+a)(‘;jim -ais aroot of xM-1. We can write (1+a)(;jim -a= Ctik for some
0<t <m-1. Since all ™ are distinct, L are all distinct. So, £'1%,...{™" are all

distinct roots of x™-1.

s+som

.. m
CH(SQ.H‘) forl1 <i<m.

Write 1 4+a = %™ Then {5 4a = (i)™ =
i l .
Forue F:’ write u = (0" with 0 < t,<m-1and 0 </, <k-1. Then we have

() = u(uk+a) = (U™ (W yg) = (o

+5+(s+j +H m for some 0 < j <k-1. Soif u,

and u, are in the same coset of F*/<{™> thent =t . andsoj, =j. . Butl #I
2 q/?; ’ uy up Jul Ju2 (] uy

whenever u;#u,. So f(up)=#f(uy) if u,#u, are in the same coset of FX/<C“‘>‘ If u; and
q
u, are in different cosets of F:/<Cm>, then tul # tu2 and so f(u1)¢f(?2). Moreover

f(0) = 0. So f(x) = x**1+ax is a PP of Fg

Note that g(x) | (x-1) implies m < k and so k > Vq-1. For q = p, we have
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Theorem 4.2.5. Let p be an odd prime, k < p-1 and k | (p-1). Then
f(x) = axk*l4bx € F,[x] is a PP of F, if and only if either a = 0 and b#0 or b = 0, az0
and ged(k+1,p-1) = 1.

Proof. Write p-1 = ki and write p-1 = m(k+1)+r with 0 <r<k. If s and t are
nonnegative integers such that s+t = m+r and s(k+1)+t = i(p-1) for some positive integer
i, then (i-1)(g-1) = (s-m)k and so s = m+(i-1)/. this implies 0 <t =r-(i-1)l. Since
k<p-1,1>+p-Tandr<+p-1. Soi=1or2. Ifi=2,thent=0andsor=1/=k. but
in this case, p-1 = m(k+1)+r = (m+1)k+m implies k | m. This is impossible because
either m > 0 implies m(k+1)+r>p-1 or m = 0 implies p-1 =r =k <Vp-1. Soi=1and
thuss=mandt=r.

Now, we consider (ax¥*1+bx)™*T. From above, we see that the coefficient of the

term xP! in the reduction of (axk*+14bx)™H mod (xP-x) is (m':r )amb’, Since m+r < p,

(m+r )

m )a"b" =0 implies eithera=0orb=0.

If f(x) = ax¥*1+bx is a PP of B, (“:;" )a™b’ = 0, by Hermite's Criterion, and so
either a =0 or b = 0. In this case, we have either that a = 0 implies b#0 or that b =0

implies a#0 and gcd (k+1,p-1) = 1. This proves the necessary part.

Finally, it is not difficult to see the sufficient part holds as well.
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